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Abstract

Decision trees are among the most popular supervised mod-
els due to their interpretability and knowledge representation
resembling human reasoning. Commonly-used decision tree
induction algorithms are based on greedy top-down strategies.
Although these approaches are known to be an efficient heuris-
tic, the resulting trees are only locally optimal and tend to have
overly complex structures. On the other hand, optimal decision
tree algorithms attempt to create an entire decision tree at once
to achieve global optimality. We place our proposal between
these approaches by designing a generative model for deci-
sion trees. Our method first learns a latent decision tree space
through a variational architecture using pre-trained decision
tree models. Then, it adopts a genetic procedure to explore
such latent space to find a compact decision tree with good
predictive performance. We compare our proposal against clas-
sical tree induction methods, optimal approaches, and ensem-
ble models. The results show that our proposal can generate
accurate and shallow, i.e., interpretable, decision trees.

1 Introduction
Machine Learning (ML) techniques are currently employed
in AI systems in high-stakes decision fields. The most ef-
fective ML predictors are considered “black-box” mod-
els (Guidotti et al. 2019b; Pasquale 2015) due to their
complexity, which renders the decision process uninter-
pretable (Li et al. 2022; Miller 2019). However, interpretabil-
ity is fundamental for predictive models adopted in sensitive
domains (Freitas 2013; Mehrabi et al. 2022). Hence, there has
recently been a flourishing of proposals for both post-hoc (Li
et al. 2022; Guidotti et al. 2019b) and by-design explainabil-
ity of AI models (Rudin 2019). Our proposal follows the
latter direction by focusing on decision trees (DTs) (Breiman
et al. 2017) that have a structure directly providing the learned
decision logic in human-comprehensible terms (Craven et al.
1995; Guidotti et al. 2019a).

Finding optimal decision trees is an NP-hard prob-
lem (Hyafil et al. 1976) with prohibitive computational re-
quirements that optimal induction algorithms can not really
avoid (Bertsimas and Dunn 2017; Demirovic et al. 2022;
Verwer et al. 2019; Khan et al. 2020; Blanquero et al. 2021;
Mazumder et al. 2022). Instead, trees are most often learned
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through greedy sub-optimal induction algorithms, which
yield decent performance at a fraction of the cost. Sub-
optimal trees are also prone to overfitting, which pruning
techniques attempt to minimize.

In between optimal and greedy sub-optimal trees, we
find non-greedy sub-optimal trees such as evolutionary (Son
1998) and genetic (Kretowski 2004) trees, which provide a
middle ground in terms of performance and complexity (Bar-
ros et al. 2012). Genetic induction algorithms encode trees
in predefined representations, which are in turn optimized.
Notably, since the encoding is predefined, the algorithm is
limited by the quality of such representation, which can lead
to unstable (Kretowski et al. 2006; Basgalupp et al. 2014) and
sub-optimal solutions. To offset the performance gap, sub-
optimal trees are combined into ensembles either through
boosting (Chen et al. 2016) or bagging (Breiman 2001),
which sacrifice interpretability for the sake of performance.

Our objective is to design a method to learn interpretable
decision trees with high predictive performance and low com-
plexity, overcoming the current limitations of state-of-the-art
proposals. Therefore, we propose GENTREE, a generative
model for decision trees able to induce sub-optimal and shal-
low decision trees. Notably, and unlike state-of-the-art induc-
tion algorithms, GENTREE is comprised of a representation
model, which learns a subsymbolic latent space of trees, and
an optimization model, which samples and optimizes trees
from said latent space. Specifically, GENTREE implements
the two with a Variational Autoencoder (VAE) (Kingma and
Welling 2014) and a genetic algorithm (Eiben and Smith
2003), respectively. To the best of our knowledge, our pro-
posal is the first tree induction algorithm which jointly ex-
ploits generative models and evolutionary algorithms to learn
decision trees. We leverage the strong representation capabil-
ities of VAEs, and the flexibility of evolutionary algorithms
to encode and search trees with high performance and low
complexity, respectively. We validated GENTREE on a large
set of datasets for the classification problem, on which it
performs favorably compared to classical decision trees and
optimal trees, and on par w.r.t. trees ensembles.

2 Related Work
Decision trees are a widely used approach in supervised learn-
ing. Most induction algorithms recursively induce splits by
locally optimizing a predefined split function. Several studies



point out that this approach is prone to overfitting (Hawkins
2004), attribute selection bias (Hothorn et al. 2006), and in-
stability (Strobl et al. 2009). Alternatives such as ensembles
of trees (Breiman 2001) have been proposed to overcome
these problems (Seni et al. 2010; Hastie et al. 2009).

We loosely base our proposal on Meta-Heuristic (MH)-
based approaches, which often induce highly accurate
DTs (Rivera-López et al. 2022). Among them, those based on
Evolutionary (EA) and Genetic (GA) Algorithms, and Swarm
Intelligence (SI) stand out for their efficacy. These algorithms
define an initial pool of candidate trees, which are encoded
with a predefined representation, and then iteratively com-
bined and validated through variation operators and a fitness
function, respectively. EA and SI induction algorithms tend
to employ different representations and variation operators.
Representation typically encode candidate trees in vectors
through appropriate conversion schemas (Wang et al. 2001).
EA algorithms encode trees in single vectors where the split
function and its parameters, i.e., split feature and threshold,
are explicitly encoded (Kennedy et al. 1997). Others may
instead encode the same information in a matrix (Vandewiele
et al. 2016). Growing in encoding complexity, SI algorithms
instead may encode trees with pairs of vectors, each vec-
tor encoding different characteristics of each node. As per
variation operators, SI algorithms enjoy a large plethora of
candidate optimizers: ant colony (Bursa et al. 2008), particle
swarm, and bat swarm (Bida and Aouat 2021), each directly
inspired by typical natural or animal ecosystems.

Our proposal is inspired by GENESIM (Vandewiele et al.
2016), an evolutionary DT induction algorithm that induces
trees by evolving an initial set of trees, rather than inducing
directly from data. However, unlike GENESIM and all other
induction algorithms, we learn tree representations within
a latent space, and then leverage GA to search for the best
trees in said latent space. To the best of our knowledge, no
other works jointly employ learned tree representations and
optimization algorithms for decision tree induction.

3 Background
To keep our paper self-contained, we report here a brief
overview of concepts necessary to comprehend our proposal.

Decision Trees. A Decision Tree (DT) is an interpretable
predictive model (Guidotti et al. 2019b; Freitas 2013) repre-
senting its decisions through a structure composed of nodes
and branches (Breiman et al. 2017; Tan, Steinbach, and Ku-
mar 2005). DTs route instances within their structure, each
node testing a split condition and routing instances towards
its children, all the way down to the leaf nodes. Each in-
stance thus traces a path inside the tree, effectively providing
a decision rule describing the decision process of the tree on
said instance. DTs are typically evaluated w.r.t. accuracy and
complexity (Rokach and Maimon 2005), typically calculated
as total number of nodes and leaves, tree depth, and number
of attributes used. The simpler the tree, the more concise and
interpretable the decision rules (Domingos 1999b; Endou
et al. 2002; Cherkauer et al. 1996).

Split conditions, and thus trees, can be univariate (axis-
parallel) or multivariate (oblique): the former operates on

a single attribute, while the latter on multiple attributes.
Multivariate trees generally perform better and are smaller
than univariate trees when the training distribution is com-
plex (Carreira-Perpiñán et al. 2018). However, axis-parallel
DTs are much easier to interpret (Brodley and Utgoff
1995). Tree induction algorithms typically implement a top-
down greedy search through the space of possible splits.
CART (Breiman et al. 2017), ID3 (Quinlan 1986), and its
successor C4.5 (Quinlan 1993) are the approaches that most
exemplify this induction strategy. These recursive partition-
ing phase is usually followed by a pruning phase aimed to
reduce complexity and overfit of the tree (Kotsiantis 2013).

Variational Autoencoders. Generative models have
gained increasing interest due to their success in gener-
ating and representing data (Oussidi et al. 2018; Bengio
et al. 2013). Among them, variational autoencoders
(VAEs) (Kingma and Welling 2019, 2014) have proven
particularly successful in a plethora of complex domains.
VAEs model the data-generation process as a probability
density Pr[X|Z, θ] conditioned on a latent distribution Z
and parameters θ. Training such a model requires sampling
over an intractably large dense sampling space, which
renders optimization intractable. Thus, VAEs employ a
two-tier architecture comprised of an encoder Qφ, which
models Pr[Z|X] and renders the optimization tractable by
drastically reducing the sampling space for Z, and a decoder
Pψ , which models Pr[X|Z]. The two components are jointly
optimized through stochastic gradient descent by optimizing
the ELBO loss (Yang 2017):

EQφ(X|Z)[logP (X|Z)]−DKL(Qφ(Z | X) || Pψ(Z)),

where the two terms work in concert to optimize data like-
lihood. Encoder and decoder are typically neural networks,
which makes VAEs extremely flexible and powerful. VAEs
have most widely been used to model complex data, includ-
ing images (Razavi et al. 2019), text (Wang et al. 2019), and
even discrete data such as logic programs (Misino et al. 2023),
yet, to the best of our knowledge, this is their first application
on interpretable models, and specifically on decision trees.

Evolutionary Algorithms. Evolutionary Algorithms
(EAs) are optimization algorithms inspired by Darwinian
evolution (Darwin 1909). Starting from an initial set of
candidate solutions, encoded as chromosomes through a
suitable encoding function π, EAs iteratively optimize them
through two variation operators, crossover and mutation.
The former combines existing chromosomes into novel ones,
while the latter randomly perturbs them. Chromosomes are
evaluated according to their fitness, which rewards better
solutions by driving further crossovers, and penalizes worse
solutions by introducing random mutations. A stopping
criterion halts the algorithm after a number of iterations, and
the fittest chromosome is returned (Eiben and Smith 2003).
Notably, EAs allow us to achieve a set of solutions, rather
than a single one. Due to their flexibility, several induction
algorithms already employ EAs (Koza 1990; Vandewiele
et al. 2016; Jankowski et al. 2014; Zhao 2007; Carvalho et al.
2000; Turney 1995; Fu et al. 2003; Rivera-López et al. 2018)
some with vectorized (Kennedy et al. 1997; Cha and Tappert
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Figure 1: GENTREE workflow: i) learns a set T of decision
trees, ii) trains a Tree-VAE to learn a latent space of trees,
and finally, iii) searches for trees in the learned latent space.

2009), others with structured chromosomes (Papagelis et al.
2000; Podforelec et al. 1998; Kalles et al. 2010).

4 Generative Tree Model
In this section, we present GENTREE, a GENerative model
for decision TREEs as an alternative procedure for inducing
DTs. GENTREE first learns a latent decision tree distribu-
tion through a VAE by leveraging pre-trained DTs, and then
adopts a GA to explore said latent space and builds a shal-
low tree with good predictive performance. The pseudo-code
of GENTREE is reported in Algorithm 1 and illustrated in
Figure 1. GENTREE takes as input a dataset X,Y where
X = {x1, . . . , xn} ∈ Rn×m is a set of n records described
bym attributes (features), and Y = {y1, . . . , yn} ∈ Rn is the
set of the target variable.1 When dealing with classification,
yi ∈ [0, . . . , l − 1] and l is the number of the classes, while
when dealing with regression, yi ∈ R. The output of GEN-
TREE is a shallow and accurate decision tree t that minimizes
the predictive error. We present GENTREE for classification,
however, it can be also adopted also for regression.

GENTREE starts by inducing a set T = {t1, . . . , tn} of n
decision trees (line 1) with function f implemented either
by leveraging existing suboptimal tree induction algorithms
such as CART (Breiman et al. 2017) or C4.5 (Quinlan 1993)
repeated n times, each inducted independently with differ-
ent hyperparameters, or by directly learning a tree ensemble,
e.g., a Random Forest (RF) (Breiman 2001). Indeed, the
trees in T can rely on different features, have different struc-
tures and different depth. Then, we encode the trees in a
fixed-length matrix representation suitable for VAEs (line
2) through an invertible encoding function π, and train the
Tree-VAE (TVAE ) (Qφ, Pψ) (line 3). Chaining π and Qφ
we are able to encode a decision tree into a continuous vec-
tor representation, while chaining Pψ and π−1 we can map
back a continuous tree representation to an actual decision
tree. Specifically, we leverage a VAE architecture (Xu et al.
2019). Using the encoding Qφ(π(T )) of the training trees T ,
GENTREE initializes the set of candidate solutions (line 5),

1In the algorithm, X,Y are already split into a training set
(XT , YT ) for tree induction, and a setXV , YV for fitness evaluation.

Algorithm 1: GENTREE(XT , YT , XV , YV )

Input :(XT , YT ) - training dataset, (XV , YV ) - training
dataset comprised of decision trees

Params :f - trees induction algorithm,
λT , λV - trees and VAE hyperparameters,
g, nS - number of generations and population size,
pc, pm - probability of crossover and mutation,
fitness - fitness function

Output :t∗ - decision tree

1 T ← f(XT , YT , λT ); // induce trees

2 MT ← π(T ); // encode the trees

3 Qφ, Pψ ← TVAE(MT , λV ); // train the VAE

4 ZT ← Qφ(π(T )); // latent trees encoding

5 S ← chromosomes(ZT ,nS ); // initial nS solutions

6 for i ∈ [1, g] do // for each generation

7 S ← crossover(S, pc);
8 S ← mutate(S, pm);
9 T ← π−1(Pψ(S)); // decode trees

10 F ← fitness(T,XV , YV ); // evaluate trees

11 S ← filter(S, F, nS); // best current solutions

12 t∗ ← argmax
T

F ; // select best tree

13 return t∗;

and proceeds to iteratively optimize it (lines 6-11). Once the
stopping condition is met, GENTREE selects (line 12) and re-
turns (line 13) the best solution. Note that GENTREE provides
flexible tree representations in the latent space alongside an
optimization algorithm as jointly trained decoupled compo-
nents. As such, unlike state-of-the-art induction algorithms,
GENTREE is particularly modular and agnostic to its com-
ponents. The TVAE can be replaced by any model able to
provide latent representations of trees, and likewise the tree
optimization algorithm can be replaced by other optimization
algorithms such as Monte Carlo and simulated annealing.
In the following, we provide details for the matrix coding
function π, the TVAE architecture, and the steps of the EA.

Matrix Representation of Trees. Both the representation
and optimization components are strongly dependent on
the data representation, the TVAE for correctly encoding
trees, and the EA for correctly manipulating them and eval-
uating them. To accommodate both components, in line
with (Jankowski et al. 2014), we define an invertible en-
coding function π : T → R2×2d−1 able to map decision
trees into 2 × 2d − 1 matrices. Thus, we encode a tree on
a R2×2d̄−1 matrix, where the two rows hold information re-
garding the nature of the nodes. The first row holds the split
feature of each node if an internal node, or−1 if a leaf, while
the second row holds the split threshold for internal nodes,
and the classification label for leaves. Tree navigation follows
the conventional breadth-first practices, i.e., the i-th visited
node is found in column i, and its children in columns 2i and
2i+ 1, respectively. Figure 2 shows an example of a matrix
representation of a DT of depth 3. On the right, we can see
the result of the expansion process applied to the left child
of the root node. The decoding procedure π−1 generates a
binary tree from the matrix and applies a pruning step to



Figure 2: DT and corresponding matrix representation. The
matrix holds node information (top row, splitting feature for
internal nodes, −1 for others), and node parameters (bottom
row, split threshold for internal nodes, class for leaves).

eliminate duplicate leaves, i.e., children of a node classifying
a sample with the same class label. Incomplete trees and trees
with depth lower than a maximum predefined depth d are
appropriately padded, thus avoiding data sparsity, which can
negatively impact VAE training (Zhao et al. 2020). Nodes at
the penultimate layer are replicated appropriately to fill the
whole matrix.

Tree Variational Autoencoder. The representation com-
ponent is implement with a Tree-VAE (TVAE ) (Sohn, Lee,
and Yan 2015) – see Figure 3. The encoder Qφ is a convolu-
tional network with two convolutional layers2 followed by
a linear one, which maps into the latent representation of
dimensionality k = dlog2(d)e. The decoder network Pψ mir-
rors the encoder. The TVAE is trained on a set of n decision
trees (line 3, Algorithm 1) for h epochs3. We highlight that
the TVAE is only tasked with learning proper tree repre-
sentation, while the optimization of such representation is
delegated to the optimization module. However, even though
the TVAE is trained on DTs limited in performance, this
would not prevent GENTREE from finding tree representa-
tions which are suboptimal or, as long as the optimal tree is
not extremely different from the training trees, even optimal.

Genetic Tree Latent Space Exploration. The optimiza-
tion component, implemented as GA, allows us to induce a
decision tree by optimizing a set of initial candidate trees.
Thanks to the mapping in a latent space provided by the
TVAE , the GA can operate in a more favorable chromo-
some space. Specifically, the latent mapping i) reduces the
dimensionality of the space of solutions, thus reducing the
search space and cost of the optimization algorithm; ii) trans-
forms the discrete space of decision trees in a continuous one,
which is more amenable to optimization and iii) has higher
expressive power (Bengio et al. 2013).

We employ a standard Genetic optimization Algorithm:
given an initial set of candidate solutions (line 1 of Algo-
rithm 1) appropriately encoded as chromosomes (lines 2–5),
we iteratively employ crossover (line 7) and mutation (line 8)
operations, evaluate the fitness of the resulting chromosomes
(line 10), and filter out the worst current solutions (line 11).
Fitness is evaluated on the actual, rather than encoded, trees,
which are obtained by first decoding chromosomes through
the decoder Pψ , and then decoding the matrix representation

2Layers implement a 1-D convolution with 32 and 64 channels,
respectively, kernel size of 3 and stride of 1.

3Up to h epochs, due to early stopping.

Figure 3: TVAE architecture. The noise ε renders sampling,
and thus the whole architecture, fully differentiable.

through π−1. Notably, by explicitly decoding the decision
trees, we can leverage already-existing metrics for tree vali-
dation. Here, we define fitness to reward accurate as well as
shallow, and thus more comprehensible (Endou et al. 2002;
Cherkauer et al. 1996), and simple (Domingos 1999a) trees.
Inspired by (Tan, Steinbach, and Kumar 2005), we propose
two fitness functions:

1− acc(Y, Y ∗) + ω
#leaves

| XV |
+ Λ(t) (1)

1− (1− ω)acc(Y, Y ∗)− ω 1

#nodes+ 1
+ Λ(t) (2)

where acc(Y, Y ∗) is the accuracy of the DT on X , ω ∈
[0, 1] is a weight aimed at balancing complexity over the
accuracy. Finally, Λ : T → {0,+∞} is a function that
checks the validity of a tree t: if t is a valid tree it returns
0, otherwise it returns +∞. The GA aims to minimize the
fitness function, i.e., to minimize the error rate and the tree
complexity simultaneously. Thus, chromosomes leading to
an invalid tree are automatically discarded4.

5 Experiments
The experiments for validating are GENTREE presented here.
First, we illustrate the experimental setting. Then, we analyze
the sensitivity of the hyperparameters of GENTREE. After
that, we compare the DT induced by GENTREE against some
competitors. Finally, we study the tree latent space learned.

Experimental Setting. We experimented on 18 datasets
from UCI Machine Learning Repository.5 We experimented
on datasets with only continuous attributes, leaving as fu-
ture work the study of the effect of categorical attributes
on the encodings. Details6 are reported in Table 1. Each
dataset was randomly split as 80%-10%-10% into a train
set (XT , YT ), used to induce a set of trees T ; validation
(XV , YV ), employed for calculating the fitness function;
and test, used to measure the performance and complex-
ity of GENTREE and it competitors, including running time7

4In practice, this happens a negligible amount of times.
5https://archive.ics.uci.edu/ml/index.php.
6Some dataset names are trimmed due to space: aus for

australian, bnk for banknote, brst for breast, dbn
stands for drybean, iso for isolet, and vlc for vehicle.

7Run on Windows 10, 16GB RAM, 1.80GHz Intel Core i7.



Dataset n m | Y |% majority % minority d

aus 690 38 2 55.51 44.49 4
bnk 45211 48 2 88.30 11.70 4
bnote 1372 4 2 55.54 44.46 6
brst 699 9 2 65.52 34.48 6
cars 1728 6 4 70.02 3.76 8
dbn 13611 16 7 26.05 3.84 7
ecoli 327 6 5 43.73 6.12 4
glass 214 9 6 35.51 4.21 4
heart 270 20 2 55.56 44.44 4
iris 150 4 3 33.33 33.33 4
iso 7797 617 26 3.85 3.82 10
led7 2563 7 8 13.30 10.53 7
lymph 142 47 2 57.04 42.96 4
pima 768 8 2 65.10 34.90 4
sonar 208 60 2 53.37 46.63 7
vlc 846 18 4 25.77 23.52 10
wine 6497 11 7 43.65 0.08 9
yeast 1484 8 10 31.20 0.34 6

Table 1: Datasets size (n), dimensionality (m), class number
(| Y |), and majority and minority class percentages.

fitness (1) fitness (2)

Accuracy Complexity Accuracy Complexity

CART .832 ± .12 13.0 ± 10.46 0.638 ± .16 2.0 ± 1.15
RF .699 ± .20 11.5 ± 10.75 0.653 ± .28 5.0 ± 1.63

Table 2: Impact of different learning and fitness functions.

(in seconds). We implemented GENTREE in Python8. We
experimented with the following hyperparameters: tree in-
duction algorithms f (CART and Random Forest (RF)),
genetic population size ({50, 100, 250, 500}), complexity
weight ω ({0.0, 0.25, 0.5, 0.75, 1.0}), number of generations
g ({1, 10, 25, 50, 100}), and fitness function ((1) and (2) as
defined in Equation 1). Probability of crossover and mutation
are set as specified in (Alan de Jong 1975). The maximum
tree depth d is specifically selected for each dataset by train-
ing a DT using CART with growing maximum depth (2 to
100), and then selecting the maximum depth d yielding the
tree with maximum accuracy.

Sensitivity Analysis. We analyze here the impact of some
hyperparameters of GENTREE on cars, dbn, iris, and
pima. In Table 2 we compare alternative trees learning func-
tions f and fitness functions fitness . Fitness function (1)
achieves high accuracy and high complexity (while maintain-
ing a small variability), while with (2) GENTREE prunes the
trees too much and obtains very small but inaccurate trees.
Thus, in the following, we consider GENTREE models trained
on CART trees and trained with fitness (1). After that, in
Figure 4 we observe how the accuracy and the complexity
change when varying (i) the number of trees, (ii) the fitness
weight ω, (iii) the size of the population for the genetic al-
gorithm, and (iv) the number g of iteration of the genetic

8https://github.com/msetzu/GenTree.

Figure 4: Impact of number of trees n, the complexity weight
ω, genetic population size nS , and number of iterations g.

algorithm. We can notice that increasing the number of trees
increases the accuracy only up to 10000. Also, the complex-
ity for less than 10000 trees is sensibly higher9. We observe
a similar effect varying the size of the genetic population. We
did not observe any improvement using more than 100 DTs,
which also yields the lowest complexity. Regarding ω, GEN-
TREE appears to be be relatively insensitive to it, achieving
stable results, with a peak around ω = 0.75. Finally, it seems
that it is better to keep the number of genetic iterations g not
higher than 10 to avoid a decrease in the performance.

Tree Induction Methods Comparison. We compare GEN-
TREE (GT) against (i) a CART tree (DT) (Breiman et al. 2017)
as implemented by sklearn, (ii) Optimal Decision Trees10

(ODT) (Bertsimas and Dunn 2017), (iii) GENESIM (GS) w.r.t.
the datasets analyzed in (Vandewiele et al. 2016), and (iv)
Random Forest (RF). For GENESIM (GS) (Vandewiele et al.
2016), the ensemble to be transformed into a single deci-
sion tree was constructed by applying several induction algo-
rithms (C4.5, CART, QUEST (Loh 2008), and GUIDE (Loh
2009)) combined with bagging and boosting. For DT, ODT
and RF we adopt the same maximum depth d value adopted
for GT, while for the other hyperparameters we use default

9Since the TVAE learns a latent space whose complexity makes
it more or less amenable to optimization, i.e., the more entangled the
learned space, the more complex it is to optimize over such space,
we have opted for relatively simple TVAEs.

10https://docs.interpretable.ai/stable/OptimalTrees/



Accuracy ↑ Complexity ↓
DT GT GS ODT RF DT GT GS ODT RF

aus .829 .855 .855 .855 .858 29.0 3.0 23.8 3.0 26.7
bank .825 .891 - .894 .881 31.0 11.4 - 11.0 30.4
bnk .916 .915 - .978 .996 43.0 11.0 - 19.0 40.8
brst .864 .914 .950 .929 .957 41.0 3.4 18.5 7.0 42.1
car .866 .875 - .913 .954 79.0 19.6 - 49.0 147.0
dnb .817 .665 - .902 .897 183.0 73.6 - 75.0 169.7
ecoli .850 .760 .853 .940 .916 25.0 3.0 19.1 15.0 26.4
glass .716 .777 .670 .682 .855 23.0 5.8 29.7 7.0 23.8
heart .764 .784 .798 .780 .920 29.0 6.2 17.4 3.0 26.8
iris .913 .967 .946 .933 .933 13.0 5.0 5.9 7.0 12.0
iso .730 .779 - .822 .933 526.2 815.2 - 163.0 597.4
led7 .733 .753 .793 .795 .804 217.0 51.2 92.0 57.0 195.8
lymph .797 .800 .787 .800 .920 25.0 5.0 14.8 5.0 21.5
pima .644 .726 .727 .766 .797 31.0 3.6 45.2 3.0 28.5
sonar .711 .695 - .762 .900 39.0 23.0 - 31.0 40.0
VCL .649 .678 .683 .776 .764 217.8 41.8 83.2 49.0 194.7
wine .482 .481 .913 .503 .595 660.2 39.6 8.0 11.0 528.6
yeast .509 .519 - .530 .572 95.0 28.4 - 35.0 86.3

avg .753 .779 .813 .808 .858 128.1 62.7 32.5 30.5 124.3
rank 2.10 1.78 - 1.43 0.99 2.10 1.10 - 1.06 1.86

Table 3: Methods accuracy and complexity. Average score
and average rank position are reported on the bottom. In bold
the best performer. In italics the best performer runner-up.

Figure 5: Critical Difference plots with Nemenyi at 90%
confidence level for accuracy and complexity.

values. Competitors use the concatenation of (XT , YT ) and
(XV , YV ) as development set to induce trees. To guarantee a
statistically valid evaluation of the performance, as proposed
in (Rajkomar et al. 2018), we bootstrapped each test set 10
times, and we report the mean values obtained by the var-
ious methods over these runs. We do not compare against
other methods because their implementation/experiments on
open source datasets are not available, and because our ob-
jective is to show that GENTREE performance are bounded
by traditional DT and ODT/RF.

Table 3 reports the accuracy and complexity for each
dataset and the average score and rank (not considering GS).
With respect to accuracy, RF is nearly always the best per-
former, followed by ODT. The second best performer is GT,
which is (nearly) always better than DT. At the same time,
GT is the second-best performer in terms of complexity, re-
turning trees with structures similar to those returned by
ODT. GT always returns trees less complex than GS while
having comparable accuracy. The non-parametric Friedman
test that compares the average ranks of tree induction meth-
ods over multiple datasets w.r.t. accuracy and complexity
guarantees that these results are statistically significant, i.e.,

Tree induction GENTREE

DT GT ODT RF TVAE Qφ ◦ π GA

µ 0.188 290.12 638.43 0.81 221.12 6.55 62.18
σ 0.739 468.06 2600.87 2.02 327.12 7.29 113.22

Table 4: Mean (µ) and std. dev. (σ) of runtime over different
datasets (left). Details of the runtime of GENTREE (right).

Figure 6: GENTREE latent tree spaces shown with two prin-
cipal components for 1000 decision trees and their pruned
counterpart. Depths (after “:”) are colored in different ways.

the null hypothesis that all methods are equivalent is rejected
(p-value < .0001). Also, the comparison of the ranks against
each other is represented in Figure 5 with critical difference
diagrams (Demsar 2006). Two methods are tied if the null
hypothesis that their performance is the same cannot be re-
jected using the Nemenyi test at α = .1. We can notice that
GT is always tied with ODT, and in terms of complexity
performs significantly bettern than DT. Table 4 reports on
the left the total runtime, while on the right, the details for
different aspects of GENTREE. We notice that GT and ODT
are markedly slower than DT and RF, the former ×2.2 than
the latter. GENTREE displays a TVAE-induced bottleneck,
whose impact can be easily reduced with GPU training.

Latent Tree Space Inspection. To understand the expres-
sive power and the properties held by the newly defined latent
tree space, we study here the latent tree space learned by GEN-
TREE for car, dbn, iris and pima. We wish to understand
if similarity in this space is invariant to tree transformations,
i.e., if tree transformations, e.g., pruning, affect the similar-
ity of trees in latent space. In Figure 6 we show the scatter
plots of the latent tree space representation of 1000 CART
decision trees before and after two-level pruning, referred
with d and p, respectively. Different colors highlight different
depths, and black arrows show how trees move in the space
when pruned. We notice two different behaviors. For pima,
it seems that the PCA representation with two components
fits well to represent the latent tree space. In bottom left of
the plot we observe that DT with depth 5 (d:5) when pruned
moves closer towards the right becoming pruned DT with
depth 3 (p:3). On the other hand, when pruning d:3 and d:4,



dataset labeling Z Z′ Z′ − Z

pima
clust 1.519± 0.54 1.519± 0.54 0.161± 0.11
rand 2.976± 1.26 2.976± 1.26 0.754± 0.49

iris
clust 3.625± 1.28 3.625± 1.28 0.786± 0.43
rand 4.713± 1.30 4.713± 1.30 0.977± 0.46

car
clust 1.635± 0.59 1.635± 0.59 0.127± 0.09
rand 4.097± 1.53 4.097± 1.53 0.721± 0.43

dbn
clust 1.627± 0.57 1.627± 0.57 0.127± 0.08
rand 3.977± 1.36 3.977± 1.36 0.901± 0.46

Table 5: SSE on groups of latent DTs Z, latent pDTs Z ′,
and latent direction Z ′ − Z with groups obtained (i) with
clustering on Z, or with random label assignment.

we witness a sort of exchange in position in the scatter plot.
Thus, similar trees in the latent tree space are typically close
to each other and clustered, but when they are pruned, we
cannot guarantee that they move near to the original position.
However, they massively move to another area remaining
clustered. Similar effects are observed for car and dbn. For
iris, it seems that there is not a clear separation among
trees, at least w.r.t. the PCA representation11.

We further inspected the tree latent space with K-
Means (Tan, Steinbach, and Kumar 2005) on the tree latent
space of 1000 DT with maximum depth d. By knee curve
analysis, K was set to 10 for all datasets except for car,
where it was set to 4. After having clustered the latent trees
(DT ) Z, we applied the same cluster labels (i) to the corre-
sponding pruned DT (pDT ) Z ′, (ii) to the directions in the
latent space to pass from DT to pDT , i.e., the point-to-point
difference Z ′ − Z. Then, we calculated the Sum of Squared
Error (SSE) on these partitionings, and we compared it with
the SSE of 100 random assignments still w.r.t. 10/4 clusters12.
The results in Table 5 prove that the two different label as-
signment strategies are independent and the random ones
never succeed in grouping closer elements of Z ′ and Z ′ − Z
w.r.t. the one based on the clustering on the latent space of
DT (Nguyen et al. 2010). Hence, pruning (or growing) in the
same way similar DTs in the latent space reflects in obtaining
similar DTs along the same movements.

We visually inspect Cluster 8 of iris to better understand
this phenomenon. The first row of Figure 7 reports a scatter
plot on the cluster unveiling that, also for iris, at the cluster
level, we observe a movement toward another latent tree area
when pruning is applied. The bar plots show the average fea-
ture importance with deviations for the original decision trees
(DT ) and their pruned versions (pDT ). We notice that when
trees are pruned, the importance of the features focuses on a
smaller set of attributes. In this example, for both clusters, the
second most important attribute shows very high variability.
The second row of Figure 7 reports two trees for each cluster,
and the corresponding pruned version appears on the third
row. All the trees are highlighted with bigger markers in the
scatter plots. We notice that the two trees differ because the
right one has all pure leaves and, therefore, an additional

11Comparable results are obtained using t-SNE.
12For Z and Z′ the SSE was calculated with Euclidean distance,

while for Z′ − Z with the Cosine distance.

Figure 7: Visualizations of Cluster 8 for iris. First row:
focused scatter plots on the clusters and average features
importance with deviations. Second row: samples of original
trees. Third row: corresponding pruned trees.

level. However, all the splits are the same. When these trees
are pruned, we observe the same difference in depth and a
similar direction in the latent tree space.

6 Conclusion
We have presented GENTREE, a decision tree induction al-
gorithm powered by latent tree representation and genetic
tree optimization. Experimental results show that the per-
formance of the trees returned by GENTREE are better than
those obtained by traditional trees and on par with those ob-
tained by optimal decision trees, still guaranteeing a lower
running time. An advantage of GENTREE over other algo-
rithms based on genetic algorithms is that genetic operators
can be applied without any modification since an individual
is a real-valued vector. Besides, the inspection of the latent
tree space learned by GENTREE shows interesting properties
that can be exploited for future studies.

Several extensions and additional experiments can be men-
tioned as future works. First, GENTREE does not implement
any local control on the trees during the training phase of
the TVAE that allows to generate DT also having a wrong
or incoherent structure. Also, it does not control any global
property of the space learned. Instead, the control of the cor-
rectness is delegated to the evaluation step of the GA. Thus,
we would like to extend the TVAE such that it only gener-
ates correct DTs and such that the latent tree space might
guarantee desired properties. Second, another study could
focus on implementing alternative techniques to map DTs
into real-value vectors and assess their impact on GENTREE.
Finally, the framework introduced by GENTREE, which con-
sists of using a pipeline of a representation model followed
by an optimization component to extract an interpretable
model for decision making, could be extended to different
combinations of algorithms and models.
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