Generative Model for Decision Trees
Riccardo Guidotti'? Mattia Setzu! Giulia Volpi!

riccardo.guidotti@unipi.it mattia.setzuQunipi.it giuliavolpi2b.93@gmail.com

Anna Monrealel

anna.monreale@unipi.it

tUniversity of Pisa, Italy 2ISTI-CNR, Italy

Decision Tree induction GenTree at a glance

When growing Decision Trees we go...
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(b) Tree Latent Space (c) Chromosomes to Trees

- greedy: Trees are induced on a greedy
suboptimal optimization (CART, C4.5);

- optimal: Trees are induced with prohibitively .
costly induction algorithms (Optimal Trees). 4
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(a) Data to Trees

Can we find a middle ground?

Figure: The Genlree algorithm: given a dataset, Genlree generates a set of Decision Trees, learns a continuous representation of them through the T-VAE, then samples
representations and optimizes them through a genetic algorithm.

Growing Decision Trees

Genetic (Decision) Trees offer a great middle

oround both Iin performance and induction times, Experiments

GenTree

but are limited by their encoding!

Genlree is a Decision Tree induction algorithm, like Results

CART and C5, which induces by: . DT: greedy Decision Tree

- GT: Genlree

- GS: GeneSim

- ODT: Optimal Decision Tree
- RF: Random Forest

Growing Trees by using Chromosomes

1. generating a set of Decision Trees T from a given

Genetic Trees leverage human-defined Decision o
training dataset;

Tree representation called chromosomes, which are
the seeds to a genetic optimization algorithm, which
evolves them Into a single Decision Tree.

2. learning a Decision Tree latent space Z and thus
representations of T+

3. optimizing trees Zr sampled out of this space.

As In natural evolution, genetic algorithms repeat- Accuracy 1 Complexity |
edly evolve a population by emulating an environ- DT GT G5 ODT RF br ~ GI G5 ODT RF
ment where subjects reproduce, optimize, mutate,  1: Data to Trees: Generating a Population NS S e oy Sae T aer e
adapt to the environment, and less fit subjects are . - | - - |
. leeﬂ J tl’alﬂlﬂg dataSet, Gerﬂ_l’ee |€V€rageS gl’eedy Table: Genfree and competing Decision Tree induction algorithmes.
culled in favor of better ones. induction algorithms to generate a large set of
Crossover Decision Trees, either through ensambling (boost- Accuracy T Complexity |
. . . DT GT  ODT RF DT GT ODT RF
ing/bagging) or perturbation.
4 O/k _ Cfé% aus 829 855 .855 .858 290 30 30 267
bank 825 .891 .894 881 31.0 11.4 11.0 304
. . o bnk .916 915 .9/8 .996 43.0 11.0 19.0 40.8
Mutation Selection 2: Learning a Decision Tree Latent Space brst 864 914 929 957 410 34 70 421
car .866 8/5 913 954 79.0 19.6 49.0 147.0
T [ (Cl dnb .81/ .665 902 .89/ 183.0 73.6 /5.0 169.7
m __he Iateht spacells learned through a nove{ Deqsmn o oL o0 T O ooo e o 0
ree Variational Autoencoder (T-VAE) which, given glass 716 777 682 855 230 58 70 238
o . heart ./64 ./84 /80 .920 29.0 6.2 3.0 26.8
a Tree t, first embeds it into a matrix, then learns iris 913 967 933 933 130 50 70 120
. iso ./30 .//9 .822 933 526.2 8152 163.0 59/4
an encoder Qo : T — Z, which maps Trees to a led7 733 .753 .795 .804 2170 512 570 195.8
Likewise, Genetic Trees are induced by iteratively )~ continuous representation; and a decoder Py, : Z — e ea4 726 766 797 310 36 30 288
.o .. . . . e [ " [ sonar ./11 695 /762 .900 39.0 23.0 31.0 40.0
mixing, ii) mutating, and i) culling an initial popula- 7~ Which maps a representation back into a Iree. VL 649 678 776 64 2178 418 490 1947
. . . . . wi 482 481 503  .595 660.2 39.6 11.0 528.6
tion of candidate trees. Evolution consists in tree jeast 509 519 530 572 e S =y

manipulation, e.g., adding subtrees to another tree,

: : , , Table: Methods accuracy and complexity. Average score and average rank position are
trimming a branch, or changing a split feature. \ b)) / reported on the bottom.
Chromosomes, the Deep Learning way m-* Qs Z P¢ > K@ T-VAE & Decision Tree Latent Space
Genetic algorithms are only as good as the chro- - 10 T~ pima 4:3 - pi1 ris .
mosomes they use, and i) choosing encodings, and ;’: 3 p:_f) d:4 = p:2
:5 = p:

i) optimizing over such predefined representations
has been found to be difficult. Idea:; do not define

PCA,

g
1 120
" & R A
h: = | = i - b
.L e -
I

e
o
i " i : w2
o= g @ﬁ#_%'?:
0 i e
P I.Lli;

PCA1

=g
™o
m

representations, learn them! Genlree samples an initial population of Trees el

Genilree introduces the Tree-VAE, a Variational Au- ~ ~17 772 %h fm”.‘ Z’. which e then fed to a genetic L drybean
. algorithm, which in turn optimizes them to extract

toencoder learning a sample-able dense space of v

o an accurate yvet simple Tree.
Decision lrees. 4 P
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3: Chromosomes to Trees oL, -
. . PCA " PCA

A4 Sampling from the latent space, a genetic algo- i ’

\ ) . - . - Figure: Genlree latent tree spaces shown with two principal components for 1000
\ / rlthm |OO|<S tO ﬁﬂd ChrOmOSOmES yleldlﬂg Slmple decision trees and their pruned counterpart. Different colors for different depths.
vet accurate Decision Trees. When evolving, Trees ~ Depths (after ) are colored in different ways.

Vo are rewarded for low complexity and high accuracy

v~ > through the following fitness function: Highlights
~ - Two-step approach to Tree induction:
z 1 — accuracy(T) + w - size(T). representation and optimization!

- Better than greedy Trees...
- ...and faster than optimal

where w controls the importance of the complexity.
Trees with low fitness value are culled.

rees!
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