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Abstract. As decision-making processes become increasingly complex,
machine learning tools have become essential resources for tackling busi-
ness and social issues. However, many methodologies rely on complex
models that experts and everyday users cannot really interpret or un-
derstand. This is why constructing interpretable models is crucial. Hu-
mans typically make decisions by comparing the case at hand with a
few exemplary and representative cases imprinted in their minds. Our
objective is to design an approach that can select such exemplary cases,
which we call pivots, to build an interpretable predictive model. To this
aim, we propose a hierarchical and interpretable pivot selection model
inspired by Decision Trees, and based on the similarity between pivots
and input instances. Such a model can be used both as a pivot selection
method, and as a standalone predictive model. By design, our proposal
can be applied to any data type, as we can exploit pre-trained networks
for data transformation. Through experiments on various datasets of
tabular data, texts, images, and time series, we have demonstrated the
superiority of our proposal compared to naive alternatives and state-of-
the-art instance selectors, while minimizing the model complexity, i.e.,
the number of pivots identified.

Keywords: Interpretable Machine Learning · Explainable AI · Instance-
based Approach · Pivotal Instances · Transparent Model

1 Introduction

In recent years, Machine Learning (ML) models have become increasingly central
in supporting human decision-making processes [11]. These models are relied
upon to tackle business problems and social issues in health science, online threat
detection, and shopping pattern analysis [9, 14, 21], among others. Still, these
models rely on complex architectures, making it difficult for anyone, experts
and end users alike, to understand their reasoning. Moreover, although these
tools may achieve identical or even superior performances compared to humans,
the “cognitive process” they employ is hardly comparable to the one humans
may use to solve the same task [43]. Given the pervasiveness of these models,
interpreting and explaining their predictions and decisions generated, ultimately
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unveiling the internal mechanism inside the “black-box”, is crucial [27]. We can
identify this as the main goal of Explainable AI (XAI) [7].

In order to construct ML models that are inherently interpretable, a pos-
sible avenue to explore involves harnessing the intuitive notion of similarity of
discriminative or descriptive elements. Our fundamental assumption is that a
model “reasoning” in terms of exemplary instances provides an inherently inter-
pretable tool to decision-makers, analysts, and end-users alike [41]. As humans,
our cognitive processes and mental models often rely on a form of case-based
reasoning [38] in which we store in our memory a large set of past exemplary
cases, and then retrieve them as needed according to the task at hand. While
the retrieval mechanism is itself obscure, reasoning in terms of said similar cases
is inherently interpretable. This form of reasoning is so ingrained in us that even
small children are able to recognize, use, and play with novel objects they have
never seen, but that, in some form, are similar to other objects that they already
know [39]. Furthermore, this applies to a wide variety of modalities: we recognize
relatives based on faces we have already seen, music genres and bands based on
song we have already heard, the origin of a recipe based on other recipes we
have already tasted, etc [26]. At its most fundamental level, similarity, and more
generally case-based reasoning, is a universal form of human reasoning, pervasive
to a plethora of modalities and data types [19].

Case-based reasoning offers significant advantages for fostering interpretabil-
ity across various domains such as health [4], financial risk prediction [31], gen-
eral text domains [12, 24], and time-series and image analysis [1]. Particularly
in the latter, recent research [25, 36] shows good promise on the effectiveness of
this type of reasoning, which is often preferred by human subjects. Given these
premises, we emphasize the importance of training data quality as a ground for
similarity between pivots and instances to predict: poor diversity or bias can re-
sult in unrepresentative cases. In contrast, feature-based methods may be more
robust in such contexts due to their focus on how features influence outcomes.

This paper aims to design an interpretable case-based model that selects
descriptive and discriminative cases to solve a decision-making task. With this
in mind, we introduce PivotTree, a hierarchical and interpretable case-based
model inspired by Decision Trees [8]. By design, PivotTree lends itself to
both selection and prediction. As a selection model, PivotTree identifies a
set of pivots, exemplary cases identified within a training set. As a predictive
model, PivotTree leverages the selected pivots to build a similarity-based De-
cision Tree, routing instances through its structure, and yielding a prediction
and an associated explanation. Unlike traditional Decision Trees, the explana-
tion is not a set of rules, but rather a set of pivots to which the instance is
similar. Like distance-based models, PivotTree is also a selection method, en-
coding instances in a similarity space that enables case-based reasoning. Finally,
PivotTree is a data-agnostic model, which can be applied to different data
modalities, jointly solving both pivot selection and prediction tasks.

Figure 1 provides an example of PivotTree on the iris dataset, wherein
flowers are classified according to their petal characteristics. Starting from a
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(a) Select (b) Predict (c) Explain

Fig. 1: PivotTree as (a) selector, (b) interpretable model, (c) Decision Tree.

dataset of instances, PivotTree filters down a set of pivots (Figure 1 (a)), i.e.,
a set of representative flowers. Said pivots are then used to learn a case-based
model wherein novel instances are represented in terms of their similarity to
the induced pivots (Figure 1 (b)). Building on pivot selection, PivotTree then
learns a hierarchy of pivots wherein instances are classified. This hierarchy takes
the form of a Decision Tree (Figure 1 (c)): novel instances navigate the tree,
percolating towards pivots to which they are more similar, ultimately building
a chain of similar pivots, and landing in a classification leaf. In this case, given
a test instance x: if its similarity to pivot 0 is higher than 0.89 (following the
left branch), then x is classified as a Setosa flower. Otherwise (following the
right branch), if x’s similarity to pivot 1 is higher than 0.85 (left branch), then
x is classified as a pivot 0 flower. If neither condition is met, x is classified as
a Virginica flower. In contrast, a traditional Decision Tree (DT) would model
the decision boundary with feature-based rules, e.g., “if petal length < 2.4 then
Setosa else if petal width < 1.7 then Versicolor else Virginica”. However, (i)
such an approach can only model axis-parallel splits, and (ii) cannot be em-
ployed on data types with features without clear semantics. Hence, improving
on traditional DTs, the case-based model learned by PivotTree can provide
interpretability even in domains such as images, text, and time series, where
by-design interpretable models are both underperforming and lack interpretabil-
ity. Furthermore, unlike conventional state-of-the-art distance-based predictive
models such as kNN [17], our proposal introduces a hierarchical structure to
guide similarity-based predictions.

Experiments conducted on 24 datasets of different modalities, i.e., tabular
data, time series, images, and text, show that PivotTree yields interpretable
predictive models that are as effective as state-of-the-art approaches at a fraction
of their complexity expressed as the number of pivots. Qualitative results indicate
high effectiveness on different data modalities, while a sensitivity analysis shows
stability in the accuracy when varying the number of pivots selected.

After a review of some related works in Section 2, in Section 3 we illustrate
our proposal. Then, Section 4 reports the experimental results. Finally, Section 5
summarizes our contributions and open research directions.
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2 Related Work

Similarity-based methods belong to one of two families: similarity methods, aim-
ing to, given a fixed data representation, learn the proper pivots3 through sim-
ilarity on said representation; and representation methods, which instead fix a
similarity function, and aim to learn a proper instance representation.

Similarity. Underlying similarity methods is the assumption of a fixed data
representation. Among them, we can distinguish three subclasses of methods:
covering, clustering, and partitioning methods. Covering methods aim to group
records around pivots. ε-ball [6] jointly learns a set of distance-based neigh-
boring coverages centered on a set of pivots. Pivots are optimized to be as few
as possible, while coverages to be as class-pure as possible. The resulting pivots
are thus laid on a “flat” structure where no structure defines the relationship
among pivots. Clustering algorithms can provide more nuanced pivot-to-pivot
relationships by tackling the lack of inter-pivot relationships. The MiniMax
algorithm [5] builds on agglomerative clustering by identifying cluster represen-
tatives, aggregating them in a hierarchical fashion, resulting in a hierarchy of
prototypes. PivotTree improves on MiniMax by greatly improving on its com-
plexity, and by leveraging pivots to perform prediction. Partitioning algorithms
segment the feature space, assigning a pivot to each segment. ProximityFor-
est [32] induces a forest of similarity-based Decision Trees routing instances
according to two pivots similarities. Notably, pivots are selected randomly, and
so is the similarity function, thus yielding highly randomized trees. Unlike cov-
ering algorithms, PivotTree constructs hierarchies of pivots, thus improving
model interpretability. Like partitioning algorithms, PivotTree partitions the
feature space, but unlike ProximityForest, it adopts a pivot selection strategy
and a fixed similarity function, greatly improving the robustness and variance of
its results. Finally, in [45] is presented a related methodology to select the best
split for DTs based on the average similarity of instance pairs belonging to each
children node. While being comparable to PivotTree as they both determine
the best split w.r.t. a similarity function, despite the title, they are inherently
different as in [45] are not identified prototypical instances, using traditional
feature-based rules for the split.

Representation. Unlike similarity methods, representation methods fix a
similarity function, and rely on learning a proper representation of the data to
find pivots. Unsurprisingly, these methods are often neural models lacking in-
terpretability. [18] and [35] introduce soft Decision Trees, wherein nodes hold
pivots, and instances are routed probabilistically towards multiple paths in the
tree, thus creating fuzzy chains of pivots. Other approaches improve on the data
representation at the cost of the intra-pivot structure. The authors in [2] in-
troduce a neural model that jointly learns the data representation and a set of
pivots, which are later used for classification. Similarly, ProtoPNet [10] and
HPNet [22] learn a neural network that identifies pivots by learning contrastive
3 In Section 2 we adopt the term pivot to refer to the instances selected by different

proposals in the state-of-the-art which do not necessarily adopt this term.
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representations and employing them for classification. Recently, a set of exten-
sions of ProtoPNet have been proposed. ProtoTEx [12] integrates a similar
approach for texts using pre-trained language models. ProtoSeNet [33] of-
fers a model where pivots can be refined through user knowledge for general
sequence-based data. ProtoryNet [24] improves ProtoSeNet by handling
longer textual sequences. Finally, by providing even more fine-grained pivots,
CNN-Trees [44] learn a neural model that constructs a hierarchy of pivots,
each layer more specific than the previous, and each pivot also providing a score
indicating its contribution to the final prediction. Unlike neural representation
methods, PivotTree learns a crisp and fully interpretable model.

3 Pivot Tree Selection Model

We present here PivotTree, an interpretable hierarchical pivot selection model
inspired by Decision Trees [8]. Let us start by formalizing the problem and
setting. Without loss of generality, we restrict ourselves to classification tasks
and leave other tasks for future work.

Problem Setting. Given a population of instances represented as real-
valued m-dimensional feature vectors4 in Rm and a set of class labels C =
{1, . . . , c}, we assume the existence of an unknown ground-truth function g :
Rn×m → C mapping each vector in Rm to one of the c classes in C. In case-
based reasoning, the objective is to learn a function f : Rm → C approximating
g, with f being defined as a function of k exemplary cases named pivots. As
explained in Sec. 2, similarity-based case-based models define f on a similar-
ity space, often inversely denoted as “distance space”, S induced by a similarity
function s : Rm × Rm → R quantifying the similarity of instances [37].

Given a training set ⟨X,Y ⟩ with X = {xi}ni=1 of n instances, Y = {yi}ni=1

with yi ∈ C the associated class labels, and a similarity function s, our objective
is to learn a function π : Rn×m → Rk×m that takes as input X and returns
a set P ⊆ X, i.e., πs(X) = P , of k pivots such that the performance of f are
maximized. Furthermore, aiming for transparency of the case-based predictive
model f , our objective is to employ as an interpretable model f Decision Tree
classifiers or k-Nearest Neighbors approaches [20] (kNN).

In practical terms, given a training set ⟨X,Y ⟩ and a similarity function s, the
selection method π selects k pivots P from X. Through the similarity function
s and the pivots P , the dataset X ∈ Rm is mapped into the similarity space S,
and thus encoded into a representation Z ∈ Rn×k where Zi,j is the similarity
between the i-th object with the j-th pivot in P . Hence, the predictive model f
is trained on ⟨Z, Y ⟩. Then, given a test instance x ∈ Rm, x is first mapped to
a similarity vector z = ⟨s(x, p1), . . . , s(x, pk)⟩ yielding its similarity to the set P
of pivots. Then, z is provided to f , which performs the prediction.

4 For the sake of simplicity, we consistently treat data instances as real-valued vectors.
Any data transformation employed in the experimental section to maintain coherence
with this assumption will be specified when needed.



6 Alessio Cascione et al.

When f is implemented with a Decision Tree, split conditions will be of the
form s(x, pi) ≥ β, i.e., “if the similarity between instance x and pivot pi is greater
or equal then β, then ...”, allowing to easily understand the logic condition by
inspecting x and pi for every condition in the rule.

On the other hand, when f is implemented as a kNN, every decision will
be based on the similarity with a few neighbors (typically between one and
five) in the similarity space S obtained computing the similarity between each
instance with respect to the selected pivots. A human user just needs to inspect
x and the similarities with the pivots P and the instances in the neighborhood.
When the number of pivots is kept small, the interpretability of both methods
increases, limiting the expressiveness. Vice versa, using a selection model π that
returns a large number k of pivots can increase the performance at the cost of
interpretability. Our proposal aims to balance these two aspects by allowing the
selection of a small number of pivots that still guarantee comparable performance
to interpretable predictive models.

PivotTree Algorithm. In this paper, with PivotTree, we implement the
selection function π. Much like Decision Tree induction algorithms [8], Pivot-
Tree greedily learns a hierarchy of nodes, each node splitting instances towards
one of its two children, ultimately reaching terminal leaf nodes, which are asso-
ciated with a classification label. The splitting is based on discriminative pivots
and representative pivots. Let Xt be the records constrained by the decision
path at iteration t in the tree construction, and Yt the associated class labels,
then a discriminative pivot is an instance of class c, i.e., p− ∈ X

(c)
t = {xi|xi ∈

Xt ∧ yi = c}, such that it maximizes the impurity gain when partitioning Xt

w.r.t. the similarity with p−. Formally, if Xt,l = {xi ∈ Xt|s(xi, p
−) ≥ βt},

Xt,r = {xi ∈ Xt|s(xi, p
−) < βt} and Yt,l, Yt,r are the associated class labels,

respectively, then if δs(p−, Xt, Yt), is the Information Gain calculated as in [8]
maximizing a task-dependent measure like Entropy or Gini w.r.t. the similari-
ties between p− and Xt (instead of w.r.t. the features Rm of Xt), it does not
exist another instance p̂− such that δs(p̂

−, Xt, Yt) > δs(p
−, Xt, Yt). Further-

more, besides discriminative pivots, for each iteration v, PivotTree also iden-
tifies representative pivots. A representative pivot is an instance of class c, i.e.,
p+ ∈ {xi|xi ∈ Xt ∧ yi = c} that maximizes the similarity with all the other
instances described by the same node and belonging to the same class, i.e.,
p+ = argmax

p′∈X
(c)
t

∑
xi ̸=p′∈X

(c)
t

s(xi, p
′).

In Algorithm 1, we illustrate the pseudo-code for training a PivotTree.
Given the dataset and labels ⟨X,Y ⟩, the similarity function s, the maximum
tree depth maxdepth, it returns the set P set of selected pivots, and the trained
decision tree T (line 5). After initializing the tree and pivots (line 1), Pivot-
Tree induces a similarity matrix S between all pairs of instances in X (line 2).
Then, the recursive procedure PTR is started (line 3). If the current depth of
the tree depth(T ) is lower than the maximum tree depth maxdepth (line 6),
then for each class, the most discriminative and most representative pivots are
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Algorithm 1 PivotTree(X,Y )

Input: ⟨X,Y ⟩ data and labels, s similarity function, maxdepth maximum tree depth
Output: P set of pivots, T learned tree
1: T ← ∅; P ← ∅; ▷ Variables initialization

2: S ← ⟨s(xi, xj)⟩ ∀xi, xj ∈ X ×X ▷ Calculate similarity matrix

3: P, T ← PTR(X,Y, T, P, S); ▷ Start of recursive procedure

4: return P, T

5: function PTR(X,Y, T, P, S)
6: if depth(T ) ≤ maxdepth then
7: for c ∈ C do
8: p− ← argmin

x′∈X(c)

δs(x
′, X, Y ); ▷ Get discriminative pivot

9: p+ ← argmax
x∈X(c)

∑
x ̸=x′∈X(c) s(x, x

′); ▷ Get representative pivot

10: P ← P ∪ {p−, p+}; ▷ Add pivots to result set

11: Xl, Xr, Yl, Yr ← SplitData(X,Y, P ); ▷ Split data w.r.t. P

12: Pl, Tl ← PTR(Xl, Yl, T, P, S) ▷ Recourse on left child

13: Pr, Tr ← PTR(Xr, Yr, T, P, S) ▷ Recourse on right child

14: T ← AddSplitToTree(T, Tl, Tr); ▷ Add split to tree

15: return P, T ; ▷ Return current pivots and tree

16: else
17: p+ ← argmax

x∈X(c)

∑
x̸=x′∈X(c)

s(x, x′); ▷ Get representative pivot

18: P ← P ∪ {p+}; ▷ Add pivots to result set

19: return P,MakeLeaf(T ); ▷ Return current pivots and leaf

selected and added to the result set P (lines 7–10)5. We notice that, since the
similarity matrix S is calculated at the beginning, the pairwise similarities to
select the most discriminative and representative pivots are available without
performing any calculus. The set P of discriminative and representative pivots
is then used to select the best split to partition the data with the SplitData
function, again maximizing the Information Gain w.r.t. the similarities w.r.t. the
pivots in P (line 11). We highlight that, by construction, SplitData selects a
discriminative pivot. However, we keep these aspects separated as it is possible to
run PivotTree relying only on representative pivots. After that, PivotTree
recourses on the left and right subsets Xl, Yl and Xr, Yr and composes the tree
returned (lines 12–14). On the other hand, if the maximum depth (line 16) or
other stopping conditions are met, then the current pivots, augmented with the
descriptive pivots of the records in the leaf, and a leaf itself (lines 17–19), are
returned. Thus, the complexity of the PivotTree is theoretically bounded by
the calculus of the similarity matrix S.

Furthermore, besides being used as a pivot selector method (π), we underline
that PivotTree can be employed as a standalone predictive model by combin-

5 To ease the computational burden, and similarly to other implementations, e.g.,
scikit-learn, we select only a subset of splits is evaluated.
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ing the encoding in the similarity space and the tree induction f . In this case,
we do not need to train additional interpretable models, as both pivot selection
and case-based prediction are already integrated into the model.

Data Agnosticism. By design, PivotTree is a data-agnostic model that
leverages the concept of similarity to conduct both selection and prediction tasks
simultaneously. While some data types, e.g., relational data, are more amenable
than others, e.g., images or text, to similarity computation, with our contribu-
tion, we aim to address all data types as one. By decoupling similarity compu-
tation and object representation, PivotTree can be applied to any data type
supporting a mapping to Rm, i.e., text through language model, images through
vision models, graphs through graph models, etc. In the following experimenta-
tion, besides tabular data, we focus on time series, images, and text.

4 Experiments

In this section, we evaluate the performance of PivotTree, which we imple-
mented in Python6, on different datasets with different modalities, and against
a wide array of competitors. Our objective is to demonstrate that PivotTree
is as accurate as state-of-the-art pivot selection methods, while being simpler.
With PTS, we indicate PivotTree used as Selector, while with PTC, we refer
to PivotTree directly used as Classification model.

Baselines and Competitors. We compare PivotTree with the following
baselines and state-of-the-art similarity-based approaches for pivot selection (π):

– RND: randomly selects instances from the training set to be used as pivots;
– RNC: same as RND, but instances are sampled separately from each class;
– KMS: runs kMeans [40] and adopts the centroids as pivots;
– KMD: runs kMedoids [40] and adopts the medoids as pivots;
– EBL: selects pivots according to the ε-ball algorithm7 [6].

Regarding model selection, we performed grid searches over the hyper parameter
space, selecting the best-performing model on a validation set. On RND, RNC,
and KMS, the number of pivots |P | is selected within a grid on |P | ∈ [2, 32].
6 https://github.com/msetzu/pivottree
7 https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html.

https://github.com/msetzu/pivottree
https://docs.seldon.io/projects/alibi/en/latest/methods/ProtoSelect.html
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On EBL, the grid search for ε is performed on an interval between the 2nd and
the 40th quantile of the empirical similarity distribution, as suggested in [6].
Regarding the interpretable predictive models (f) to be used on the selected
prototypes, we rely on kNN and Decision Tree as implemented by the sklearn
Python library. For PivotTree, both used as selector or predictor, i.e., PTS
or PTC, the best maxdepth is searched in an interval [2, 4]. Obviously, a deeper
PivotTree yields the selection of a larger number of pivots. Finally, to guar-
antee interpretability for the predictive models, we fix the hyper parameters as
follows. Maximum depth equals four for Decision Trees [3], and the maximum
number of neighbors for kNN equals to five [19]. As further baselines, we also
compare PivotTree with kNN and DT directly trained on the original feature
space while preserving hyper parameters.

Evaluation Measures. We evaluated the effectiveness of the selected pivots
by measuring the F1-score of the predictive models relying on the different sets of
pivots8. In line with the literature [7], as proxy of interpretability, we evaluated
the complexity in terms of k, the number of selected pivots. Note that k can either
be user-given, or optimized w.r.t. a given validation set. We experiment in both
settings. Finally, to account for differences in datasets, and ease comparison, we
turn complexity into simplicity as 1− k

|X| .

Datasets. In order to show the effectiveness of our proposal for different data
types, we experimented with 11 tabular datasets, 5 time series datasets, 3 image
datasets, and 5 text datasets. Table 1 reports some dataset details9. For tabular
datasets, in order to perform a direct distance comparison between instances, we
leave unvaried numeric and ordinal features while we one-hot encode categorical
ones. We discard instances presenting missing values for one or more features.
The datasets are then normalized with a z-score normalization by removing the
mean and scaling to unit variance. Time series datasets are left unchanged as they
are already preprocessed and normalized. For textual datasets, we first embed the
input text with the all-mpnet-base-v2 sentence transformer model10, which
yields L2-normalized 768-dimensional dense vector with magnitude 1. Finally,
for image datasets, we embed each dataset with pretained and fine-tuned vision
models. Further details are provided in the project repository. On the basis of
these encodings, the similarity s is based on the Euclidean distance. While text
embeddings usually rely on cosine similarity, in [29] it is shown that under unit
normalization, the two are directly proportional and thus order-preserving.

Tabular datasets are divided into 70% training and 30% testing, while non
tabular data sets come with their own split into training and test set. During
model selection, a further split is performed, allocating for each development set
80% of the instances for training and 20% for validation. Thus, for each pivot se-
lection method and classification method of each dataset, we perform a hold-out
model-selection procedure, i.e., we find the best-performing hyper parameters

8 For multi-class datasets we calculate the metric for each label and report the unweighted mean.
9 The links to the various repositories and detailed preprocessing steps for the different datasets

are available on the project repository.
10 https://huggingface.co/sentence-transformers/all-mpnet-base-v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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pivot

if s(x, p574) ≤ 128
and s(x, p65) > 163
then bird

if s(x, p574) ≤ 128
and s(x, p351) ≤ 119
and s(x, p781) ≤ 110
then cat

Fig. 2: PivotTree prediction and explanation on cifar. Top: selected pivots.
Center and bottom: two classification examples. On the left a test instance; in
the center, the five nearest neighbors of the selected pivots; and on the right a
case-based decision rule.

configuration on the validation set and use it in the model-assessment phase,
training on the whole training set and considering the resulting performances on
the test set for final assessment.

Qualitative Results. In the following, we illustrate some qualitative exam-
ples on different data types to show the usability of PivotTree at prediction
and explanation time with DT and kNN with the same set of pivots. PivotTree
selects a set of pivots, which are then the training set for either a kNN or a DT.
In the latter case, the data is first encoded in a pivot-instance similarity matrix.
In Figure 2, we report two prediction and explanation examples on cifar. The
top rows illustrated the pivots selected by PivotTree. The central and bottom
rows show two classification examples for the bird and cat test instances, both
on the left of the respective rows. Next to the test instances, we display the five
neighbors selected by a kNN on the pivots similarity space. We can notice that
for the bird example, all the neighbors are indeed birds quite similar in color
and shape to the test instance. On the other hand, for the cat example, there
are also some deers among the neighbors that however are in the same palette
as the test instance. Finally, the right column shows the decision rules obtained
by training a DT in the similarity space derived by PivotTree. We notice that
the bird is recognized thanks to its dissimilarity with the car pivot p574 and its
similarity with the bird pivot p65. On the other hand, the cat is classified due
to its dissimilarity with p351 and p781. Thus, similarly to humans, these kinds
of models can also reason by exclusion, suggesting their applicability also in the
context of few-shot learning.

Similarly, Figure 3 reports two examples from the gun and ecg datasets,
classifying tracked hand movements as gun draws and holsterings or not, and
heartbeats of five different types, respectively. For both cases, the test instance
has a large set of peculiarly similar neighbors, each with minimum variations.
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if s(x, p10) > 6
and s(x, p41) > 8
then gun

if s(x, p196) ≤ 12
and s(x, p227) ≤ 11
and s(x, p41) > 14
then normal

Fig. 3: Test time series (1st column), pivots extracted by PivotTree (2nd col-
umn), neighbors selected by kNN (3rd column) and decision rule (4tg column)
on the gun (top) and ecg (bottom) datasets.

For the gun dataset, PivotTree has identified three pivots, two for the not a
gun class, both characterized by short starting and ending movements, and in-
terleaved by a long plateau. Here, the movement is sharp, but somewhat smooth,
especially when gun is drawn, rather than holstered. The third pivot, associated
to the gun class, is instead characterized by minimal motions, interleaved by a
sharp draw, and a short plateau. The more pronounced movement closely re-
sembles the test instance, but for a slight shift, and the instance is correctly
classified by kNN as gun. The decision rule of the DT instead recognizes the gun
class due to the similarity with p10 and p45. For ecg, PivotTree identified four
pivots, the test instance is very similar to p196 in the initial part and to p41 in
the final part. The kNN classifier correctly retrieves neighbors with this shape
and the test is correctly classified as normal. The DT instead distinguishes the
normal class due to its limited similarity with p227 and high similarity with p41.

Quantitative Results. Table 2 and Table 3 report the predictive model
performance (F1-score) and complexity (number of pivots), respectively, per data
modality and predictive model, i.e., DT and kNN. The bottom rows of the table
report the average performance and standard deviations for all methods, and the
rank of the pivot selection methods. The best and second-best performers per
dataset among the pivot selection methods are in bold and italic, respectively. We
can notice that when relying on the original data representation, i.e., when using
directly DT or kNN on the training data, we have slightly better performance
at the cost of losing the interpretability for non-tabular datasets. Focusing on
predictive models relying on pivots, we notice that EBL has, on average, the
highest F1-score (Table 2) immediately followed by PTS both for DT and kNN.
We observe that the difference in the average of F1-score between EBL and
PTS is only 0.1. All the other approaches follow them, with PTC being worse
than EBL, thus indicating that PivotTree, in its current implementation,
works better as a selector than as a classifier. On the other hand, concerning the
complexity (Table 3), even though PTS is not minimizing the number of pivots
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Table 2: Predictive model performance as F1-score.
predictor Decision Tree kNN
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Im
g cars .01 .02 .02 .02 .02 .02 .02 .00 .86 .75 .84 .78 .75 .80 .84

cifar .75 .40 .40 .40 .41 .41 .39 .11 .87 .87 .87 .88 .88 .88 .87
mnist .68 .44 .41 .53 .44 .41 .37 .29 .97 .96 .96 .96 .96 .97 .96

T
ab

u
la

r

breast .95 .94 .93 .93 .94 .95 .94 .95 .96 .95 .95 .95 .96 .96 .95
compas .50 .47 .48 .46 .48 .48 .52 .49 .46 .47 .48 .48 .48 .46 .47
german .58 .54 .53 .48 .48 .61 .50 .48 .67 .59 .59 .59 .59 .65 .60
heloc .70 .66 .66 .65 .66 .67 .68 .66 .67 .66 .66 .67 .67 .67 .66
house .80 .72 .72 .73 .73 .78 .76 .77 .83 .80 .79 .80 .80 .82 .80
iris 1.0 .94 .91 .96 .96 .90 .92 .92 1.0 .99 1.0 1.0 1.0 1.0 .98
page .88 .84 .86 .87 .85 .88 .84 .87 .90 .88 .89 .90 .89 .90 .88
diva .79 .60 .59 .58 .56 .64 .64 .63 .76 .72 .72 .70 .71 .75 .73
sonar .74 .70 .73 .72 .71 .77 .73 .59 .94 .82 .84 .83 .81 .89 .84
vert. .72 .68 .69 .66 .69 .65 .71 .68 .73 .69 .69 .73 .76 .74 .78
wine .20 .19 .20 .19 .20 .20 .20 .18 .37 .35 .35 .35 .36 .35 .35

T
ex

t

imdb .70 .73 .72 .75 .74 .79 .78 .78 .78 .78 .77 .79 .80 .79 .82
lyrics .66 .69 .69 .68 .68 .70 .70 .70 .71 .70 .70 .70 .70 .71 .71
news .12 .16 .16 .19 .18 .16 .24 .01 .69 .55 .50 .62 .60 .66 .65
tgpt .84 .80 .80 .80 .81 .84 .79 .84 .92 .88 .88 .90 .90 .89 .89

vicuna .63 .57 .55 .55 .59 .64 .63 .59 .68 .69 .69 .67 .71 .73 .72

T
im

eS

devices .25 .33 .32 .34 .34 .39 .42 .34 .49 .47 .46 .48 .48 .49 .52
worms .54 .54 .53 .57 .56 .56 .56 .56 .60 .58 .61 .58 .58 .61 .70
ecg .52 .50 .51 .50 .50 .53 .51 .51 .57 .54 .54 .55 .55 .56 .56
gun .80 .77 .77 .76 .78 .77 .71 .74 .91 .87 .87 .89 .89 .88 .84

wafer .90 .93 .93 .94 .94 .95 .92 .93 .99 .97 .98 .98 .98 .98 .98
avg .64 .59 .59 .59 .59 .61 .60 .57 .76 .73 .73 .74 .74 .76 .75
std .26 .25 .25 .25 .25 .25 .24 .29 .18 .18 .18 .18 .18 .18 .17
rank 4.8 4.8 4.21 3.9 2.5 3.5 4.3 4.9 4.4 3.6 3.15 2.2 2.9

selected compared to other methods such as KMS, it still requires less than half
of the pivots used by EBL to guarantee comparable performance.

The non-parametric Friedman test compares the average ranks of the var-
ious methods over multiple datasets w.r.t. an evaluation measure, in our case,
F1-score and complexity. The null hypothesis that all methods are equivalent
is rejected (p < 0.001) for all the experiments reported in the various tables.
The comparison of the ranks of all methods against each other can be visually
represented as shown by the critical difference plots in Figure 4: lower rank val-
ues indicate better models, i.e., best ranks on the right (see [16] for details).
In Figure 4, methods statistically equivalent according to a post-hoc Nemenyi
test are connected by black lines. We notice that regardless of the classification
model f used, EBL and PTS are tied w.r.t F1-score, while PTS is significantly
less complex and untied w.r.t. the number of pivots selected.

In summary, PTS is the best pivot selector, achieving high predictive per-
formance with a smaller number of pivots. Such a result is best appreciated in
Figure 5, where we show the mean and standard deviation of the F1-score and
the simplicity of pivot selection methods. Besides, Figure 5 also highlights the
lowest variability of PTS w.r.t EBL in terms of simplicity.

We repeated the experiments in a constrained setting11 wherein pivot selec-
tion was limited to a maximum of 20 pivots (Table 4 and Figure 6). While the
11 cars has not been used as it contains 196 classes, and all the methods would have failed.
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Table 3: Predictive model complexity as number of pivots used.
predictor Decision Tree kNN
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g cars - 10 196 6 6 64 778 4 - 32 196 32 28 64 974

cifar - 32 10 18 28 220 118 12 - 32 20 22 30 18 42
mnist - 4 10 4 4 261 2 12 - 32 20 30 30 133 73

T
ab

u
la

r

breast - 32 24 20 28 88 39 6 - 26 28 12 6 99 20
compas - 32 32 30 18 70 9 10 - 18 18 30 32 581 7
german - 26 32 24 24 60 22 10 - 32 32 32 32 72 32
heloc - 28 32 24 32 880 9 9 - 32 32 18 22 378 9
house - 32 32 16 20 2k 6 13 - 32 26 28 32 1k 30
iris - 28 32 28 4 69 16 3 - 28 28 32 28 20 10
page - 32 32 22 24 105 69 10 - 30 32 6 20 112 6
diva - 30 32 32 30 528 83 13 - 32 28 30 30 311 13
sonar - 32 32 22 22 26 21 4 - 32 20 22 24 21 6
vert. - 30 32 28 8 61 53 8 - 32 10 18 8 21 3
wine - 28 28 22 22 150 158 14 - 24 28 22 32 32 121

T
ex

t

imdb - 32 32 10 18 531 26 8 - 32 32 8 30 980 26
lyrics - 30 32 30 24 5k 24 2 - 32 32 30 28 156 99
news - 30 20 20 22 215 106 13 - 32 20 32 32 215 844
tgpt - 26 32 14 26 247 18 12 - 32 32 32 28 187 68

vicuna - 32 32 32 14 107 40 12 - 32 32 32 32 540 30

T
im

eS

devices - 32 28 24 8 136 408 12 - 32 28 26 30 896 89
worms - 32 30 12 16 107 25 6 - 8 24 26 14 32 20
ecg - 28 28 16 24 43 14 3 - 30 24 30 26 96 37
gun - 28 20 8 30 15 2 2 - 20 24 8 20 5 4

wafer - 26 28 12 24 43 13 3 - 30 32 32 30 43 45
avg - 28 35 20 20 523 86 8 - 29 33 24 26 259 109
std - 7 35 8 8 1k 170 4 - 6 35 8 7 338 249
rank 4.8 4.9 3. 3.3 6.6 3.9 1.4 3.7 3.1 2.9 2.9 5.1 3.3

average performance remains more or less unchanged, we notice that PTS is the
best performer among the various competitors when DT is used as a classifier.
On the contrary, PTC worsens its ranking. In other terms, PivotTree excels
in different settings according to the number k of pivots extracted: when k is
small, a Decision Tree is best; and when k is large, then kNN is best.

Sensitivity Analysis. Figure 7 reports a sensitivity analysis on PivotTree
used as pivot selector (PTS). In particular, we observe the average F1-score
among all datasets with error bars indicating the standard deviations when vary-
ing the maximum number of pivots in ranges from 10 to 20, from 20 to 30, etc.
Two lines are reported to differentiate the performance between datasets with 2
or 3 classes, i.e., c ∈ [2, 3], versus datasets with 5 to 10 classes, i.e., c ∈ [5, 10].
We leave as a future study a sensitivity analysis of datasets with more than
10 classes. The results show that, both for DT and kNN, for datasets with few
classes, the performance is stable independently of the number of pivots selected.
Thus, extracting a limited number of highly discriminative and representative
pivots can guarantee high performance and high simplicity. On the other hand,
for datasets with more than five classes, the results are less stable, and we observe
an increase in performance, especially when using kNN, as the DT we relied on
is limited by the maximum depth of four, thus practically being limited by its
depth and not exploiting all the possible pivots. As a consequence, for datasets
with a high number of classes, the tuning of the number of pivots k extracted
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Fig. 4: Comparison of model’s rank w.r.t. F1-score and complexity against each
other with the Nemenyi test. Groups of classifiers that are not significantly
different at 95% significance level are connected. Best ranks on the right.

Table 4: Model performance as F1-score with models limited to 20 pivots.
predictor Decision Tree kNN
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g cifar .75 .39 .40 .40 .41 .41 .42 .11 .87 .86 .87 .88 .88 .88 .80

mnist .68 .44 .41 .53 .44 .42 .37 .29 .97 .96 .96 .96 .96 .96 .95

T
ab

u
la

r

breast .95 .93 .94 .93 .94 .94 .96 .95 .96 .95 .95 .95 .96 .97 .95
compas .50 .46 .48 .46 .48 .47 .52 .49 .46 .47 .48 .48 .47 .49 .47
german .58 .52 .53 .56 .49 .44 .50 .48 .67 .58 .58 .59 .58 .60 .58
heloc .70 .65 .65 .65 .65 .65 .68 .66 .67 .66 .65 .67 .67 .67 .66
iris 1.0 .94 .92 .98 .96 .95 .95 .92 1.0 .95 1.0 1.0 1.0 1.0 .98
page .88 .83 .83 .87 .87 .88 .84 .87 .90 .88 .88 .90 .89 .89 .88
diva .79 .60 .60 .58 .55 .59 .63 .63 .76 .72 .71 .69 .70 .71 .73
sonar .74 .71 .70 .71 .71 .74 .72 .59 .94 .82 .84 .82 .83 .89 .84
vert. .72 .66 .69 .66 .69 .66 .66 .68 .73 .69 .69 .73 .76 .74 .78
wine .20 .19 .19 .19 .19 .18 .19 .18 .37 .35 .35 .35 .35 .35 .36

T
ex

t

imdb .70 .72 .71 .75 .74 .77 .78 .78 .78 .76 .75 .79 .79 .81 .81
lyrics .66 .68 .68 .68 .68 .70 .70 .70 .71 .69 .69 .70 .68 .71 .68
news .12 .15 .16 .19 .18 .16 .19 .01 .69 .48 .50 .58 .55 .58 .40
tgpt .84 .79 .79 .80 .82 .84 .79 .84 .92 .87 .86 .88 .88 .90 .88

vicuna .63 .55 .55 .52 .59 .57 .64 .59 .68 .67 .67 .66 .69 .72 .71

T
im

eS

devices .25 .32 .30 .30 .34 .36 .38 .34 .49 .46 .44 .48 .49 .46 .47
worms .54 .52 .52 .57 .56 .61 .56 .56 .60 .58 .61 .60 .58 .51 .70
ecg .52 .49 .51 .50 .50 .46 .51 .51 .57 .54 .54 .55 .55 .55 .56
gun .80 .77 .77 .76 .77 .77 .71 .74 .91 .87 .86 .89 .89 .88 .84

wafer .90 .93 .93 .94 .93 .93 .92 .93 .99 .97 .98 .98 .98 .98 .98
avg .66 .60 .60 .62 .61 .61 .62 .58 .76 .72 .72 .73 .73 .74 .73
std .23 .22 .22 .22 .22 .23 .22 .27 .18 .19 .19 .18 .19 .19 .19
rank 5.0 4.6 4.0 3.6 3.7 3.1 3.9 4.8 4.1 3.0 3.1 2.2 3.5

with PivotTree should be carefully addressed, and it should consider a high
number potentially limiting the final interpretability of the predictive model.

Although time complexity is not the primary focus of this paper, here we also
report training runtime (in seconds). As example for small datasets, breast and
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Fig. 5: Scatter plots for average F1-score and simplicity for pivot selection meth-
ods with error bars reporting 10% of the standard deviation.

Fig. 6: Comparison of model’s rank w.r.t. F1-score against each other with Ne-
menyi test. Classifiers that are not significantly different at 95% significance level
are connected. Best ranks on the right. Models limited to 20 pivots.

ecg datasets present fitting runtimes respectively of 4.34s and 8.29s. In contrast,
tgpt and cifar show higher training times of 24.91s and 60.70s. Larger datasets,
both in terms of instances and dimensions, require longer training times, due
to the need of finding pivots within a bigger pool. For example, lyrics requires
458.81s for training. In all cases mentioned, prediction times are relatively fast,
with all predictions taking under 24.10s, which is the time needed to perform
predictions for the imdb test set.

5 Conclusions

We have introduced PivotTree, an interpretable tree-based pivot selection
model aimed at facilitating the training of effective interpretable case-based
predictive models. In PivotTree, exemplary instances, named pivots, guide
the construction of a similarity-based case-based model where explanations are
a hierarchy of prototypical instances. By design, PivotTree is both a pivot
selector and a prediction model, enabling, independently, both the extraction
of relevant instances and the construction of an interpretable predictive model.
PivotTree is a data-agnostic model, which can be seamlessly applied to various
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Fig. 7: F1-score varying the number of pivots w.r.t. bins of pivots for datasets
with different number of classes.

data modalities, including tabular data, text, time series, and images. In a wide
array of experiments, PivotTree has shown to be on par with state-of-the-art
approaches while often retaining lower complexity and higher interpretability.

Given its inherent flexibility, PivotTree lends itself to several future im-
provements: different data encodings, e.g. TabPFN [23] or Rocket [15], may
further improve instance representation, and thus similarity estimation; joint op-
timization of pivot selection and case-based reasoning, which is currently decou-
pled in pivot selection, and tree induction; use of more sophisticated case-based
reasoning models; adaptation for other data types such as mobility trajecto-
ries [30], and evaluation of the privacy exposure lead by pivots [34]. Another
avenue of research lies in integrating prior knowledge or human supervision into
prototype learning, as human-machine collaboration could improve the classi-
fier’s accuracy and interpretability, as suggested and investigated in [33, 42].
Furthermore, future avenues of research also include assessing PivotTree’s
interpretability from a human-centric perspective, validating its performance
through evaluation schema designed for prototype-based explanations, as de-
scribed for images in [13,28], time-series in [33], and texts in [12,24]. As such, an
extensive comparison of PivotTree’s performance and explainability could be
conducted against deep learning-based representations of the prototypes across
different modalities, as well as through feature-based explainability techniques.
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