
SPARQL Queries over Source Code

Mattia Setzu
Dept. of Mathematics and Computer Science

University of Cagliari

Via Ospedale 72, 09124 Cagliari (Italy)

Email: ma.setzu2@studenti.unica.it

Maurizio Atzori
Dept. of Mathematics and Computer Science

University of Cagliari

Via Ospedale 72, 09124 Cagliari (Italy)

Email: atzori@unica.it

Abstract—We introduce a framework to extract and parse
Java source code, serialize it into RDF triples by applying an
appropriate ontology and then analyze the resulting structured
code information by using standard SPARQL queries. We present
our experiments on a sample of 134 Java repositories collected
from Github, obtaining 17 Million triples about methods, input
and output types, comments, and other source code information.
Experiments also address the scalability of the framework. We
finally provide examples of the level of expressivity that can be
achieved with SPARQL by using our proposed ontology and
semantic technologies.

I. INTRODUCTION

Recent research in software engineering is focusing on
improving the user experience of computer programmers by
proposing tools that make finding and reusing existing software
code very easy. For instance, Microsoft Research is developing
a search tool called Bing Code Search/Developer Assistant
[1] that extracts contextualized C# code from different HTML
sources, such as StackOverflow1, based on text questions like
“how to read file line by line”. Other research focused on
searching and automatically recalling code based on type
information, such as JavaSketch/Prospector [2], with an ad-hoc
simplified query language, or a rule-based approach to code
transformation [3]. These approaches seem to either focus on
textual queries (sometimes keyword based such as in [4]) or
more structured queries that do not take textual information
into account. Other work, such as the Web of Functions,
focused on reusing code by sharing it over the internet and
making use of it from SPARQL through remote procedure calls
[5], [6].

In this paper we propose to leverage the existing open-
source codebases available on massive repositories such as
Github to extract structured information (such as class hi-
erarchies, methods, types, etc.) and semistructured and un-
structured information (such as textual comments) in order to
generate a large set of RDF triples that can be queried for
different purposes, including code completion, automatic code
writing, code mining, etc. We apply well-known semantic web
techniques such as automatic entity annotation algorithms to
enrich the content of otherwise unstructured text comments
found in the source code. This way we obtain 3 main results:
(i) we provide great expressivity by using an existing standard
query language such as SPARQL, (ii) we instantly get benefit
of millions of triples extracted from existing codebases that
can be then queried, and (iii) we make both structured and

1http://stackoverflow.com/

unstructured information usable at the same level, enriching
textual information with semantic web annotations.

We believe that our proposal shows the benefits that Se-
mantic Web technologies can provide in research areas such as
software engineering and computer-aided programming, also
contributing with tools and the resulting dataset to further
investigation.

With respect to software development, semantic search may
allow developers to substantially reduce time and costs by
introducing enhanced ways to code reuse, focusing on existing
code bases that have been already tested and in production.
Existing text-based search engines are not appropriate for this
task as they fail identifying the code scope, its dependencies
and the most abstract and implicit relations. Here a few
examples of limitations of keyword-search approach: given
a keyword, it is unlikely to find a snippet of code whose
functionality is described using that specific word; a retrieved
snippet of code cannot be seamlessly executed as it is, due
to lack of dependencies or entities the code refers to, but not
declared in the snippet itself; classes, packages and variables
referenced would not be self-evident on a text-only basis; given
two snippets of code it is not possible to seamlessly merge
them for the same reasons, nor is possible to know when two
code elements in two different snippets refer to the same entity.

We propose a semantic search layer on top of a full-
text search that enables structured queries (later discussed in
section III) and provides a transitive layer for natural language
queries.

II. THE FRAMEWORK

The framework is based on a workflow that follows four
sequential steps described in this section. Some parts, such as
the ontology we propose and the use of SPARQL for querying
the resulting dataset, are detailed later in this paper.

Extraction. The first step is aimed at collecting a set of
repositories from Github and their mandatory dependencies.
Since most of recently developed Java code is built and
distributed through automated build tools, our extraction tool
supports the two most popular, namely Gradle and Maven.
Both allow the programmers to specify the program structure,
its dependencies in name and version and other minor details.
The very first step is therefore to identify the build tool used
in each repository, and automatically and recursively download
all dependencies in order to get a valid classpath. The tools
avoid multiple downloads of the same package.

2016 IEEE Tenth International Conference on Semantic Computing

978-1-5090-0662-5/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSC.2016.65

104

Authorized licensed use limited to: University of Pisa. Downloaded on July 02,2023 at 16:13:45 UTC from IEEE Xplore.  Restrictions apply. 



Parsing. The parsing and error checking is managed by
Spoon, a Java source code parser and analyzer. All downloaded
software modules get checked for errors; then Spoon creates
an enhanced Abstract Syntax Tree (AST) of the source code.
We developed a Spoon Processor that recursively collects:
method’s names, parameters and return types, classes, mod-
ifiers, javadocs, raw source code snippets, and references to
other entities (e.g., classes and interfaces) in the source code.
They are internally saved by the crawler using a pseudo-RDF
representation.

Serialization. The serialization phase maps the internal rep-
resentation into RDF triples using our proposed ontology
described later in the next section. In order to do this we take
advantage of the Apache Jena libraries, producing a dataset in
the N-Triples format.

Semantic Enrichment. We use state of the art entity recognition
services for text analysis [7], [8], based on Wikipedia data,
to provide an high-level tagging of the Javadoc comments. A
script to fetch data for the REST service has been created.
Javadoc comments are therefore tagged, creating an extra N-
Triples dataset with their semantic annotations.

III. AN ONTOLOGY TO DESCRIBE SOURCE CODE

The ontology we propose to model the Java language,
created with the Protégé semantic tool, is inspired by previous
work in [9] as it provides definitions for most of the same
entities, and is built on three layers, core, object-oriented and
Java to enhance flexibility. For our purposes, we extended the
original proposals with a number of definitions. For instance,
declared by, has parameter, parameter position, source code
have been added to allow source graph walks in both direc-
tions, to keep track of the dependencies of each method and
entity, and retrieve every element’s source code. In Fig. 1,
an excerpt of the is-a hierarchy is show. Our current on-
tology consists of 74 entities (e.g., woc:Method) and 217
triples (e.g., the property woc:has_parameter for the entity
woc:Method).

A. Extensibility

While the ontology is focused on the Java 1.8 syntax
specification, it provides several definitions in the core and
object-oriented layers which are common to other paradigms,
thus being redundant but more expressive. As a consequence,
while our work focused on Java only, languages sharing most
design guidelines with Java can be described in the ontology
with only a minimum set of additional definitions.

For instance, let us use Scala and its higher order functions.
The Java layer defines both methods and parameters as datum,
defined as a self-existent code element. Trivially, we’ll be able
to define a function as a datum and a parameter as either a type
or a function itself. Scala defines types for functions: we will
have triples similar to these ones: function a type, function a
datum, parameter a type, parameter a datum, without affecting
the core or the object-oriented layers. As a worst-case scenario
let us use a language relatively recent, with a highly specific
target, that is GO and its goroutines. As a concurrent-specific
feature, such definitions do not belong to the core layer, nor to
any of the ones defined in the ontology. The ontology devel-
oped is oriented towards languages as formal implementations

Fig. 1. An excerpt of the is-a ontology property.

of Turing-complete implementations of languages and shall not
define specific paradigm or hardware-related concepts in order
to preserve a tiny core and great flexibility.

IV. EXPERIMENTS

In our experiments we considered a sample of 134 Github
repositories, selected among the most starred in the platform
using either Gradle or Maven. The tool can also run on
repository with others or none build system, provided a valid
classpath is given. In Table I we show a subset of them, with
quantitative information about the data we extracted, including
overall information obtained by summing up data from all 134
repositories.

TABLE I. REPOSITORIES

Repository

LLOC (logical

code lines) Triples Individuals Classes Methods

Activemq 577072 4520027 25633 2397 7215

FB-Presto 333194 429280 25227 4481 20255

Junit 37975 50955 2006 1129 2125

A.Jena Core 195561 179194 19174 1469 6552

OrientDB 389038 172473 4722 316 1603

Clojure 58067 59117 7222 357 2247

Overall 15209817 17115353 738444 121847 414723

We also provide response time on the Overall dataset in I,
obtained by looking for all triples, classes, etc. against our
Fuseki 2.13 server on a Compaq Presario CQ58 (1.1GHz
x86 62 AMD 20, 4GB DDR3 RAM, 500GB 5400rpm HD):

TABLE II. QUERY TIMES

Query Triples Classes Methods Interfaces

Time(ms) 395538 2958 14928 704

V. QUERYING SOURCE CODE USING SPARQL

In the demo we will show the effectiveness of the
framework and the expressivity of SPARQL against our
dataset and ontology. In the following we now show
two examples of possible queries that can be handled

105

Authorized licensed use limited to: University of Pisa. Downloaded on July 02,2023 at 16:13:45 UTC from IEEE Xplore.  Restrictions apply. 



with our approach. Notice that the prefix woc stands for
<http://rdf.webofcode.org/woc/>. Further information
can be found at the project website: http://atzori.webofcode.org/

projects/SPARQL4coding/

Get the source code of all methods which take no parameters
in input and returning an int

SELECT ?code WHERE {
?method rdf:type woc:Method .
?method woc:returns woc:int .
?method woc:source_code ?code
FILTER NOT EXISTS {

?method woc:has_parameter ?par
}

}

Get all classes referenced by any boolean-returning method of
org.junit.assert.Assert

SELECT ?class WHERE {
?method rdf:type woc:Method .
?method woc:declared_by

woc:org.junit.assert.Assert .
?method woc:returns woc:boolean .
?method woc:request ?method_invoked
?method_invoked woc:declared_by ?class
FILTER NOT EXISTS {

?method woc:has_parameter ?par1 .
?par1 woc:parameter_position 1

}
}

Get all methods that are recursive

SELECT ?method WHERE {
?method rdf:type woc:Method .
?method woc:request ?method

}

In the following query we show an advanced query that makes
use of semantic annotations of comments of our framework
plus the property paths feature of SPARQL 1.1.

Get methods for writing and managing PNG images, with
required libraries/classes code

SELECT ?method WHERE {
?method rdf:type woc:Method .
?method rdfs:about

dbpedia:Portable_Network_Graphics .
?method rdfs:about dbpedia:Computer_file .
?method rdfs:about dbpedia:Writing .

# source code
?method woc:source_code ?source .
# declaring type
?method woc:declared_by ?c .
# package
?pack woc:package ?c
# return type
?method woc:returns ?return .
# parameters
?method woc:has_parameter ?par .

?par woc:type ?par_type .

# source code for required elements
?method

(woc:requests+ /
(<http://rdf.webofcode.org/woc/>)*
/ woc:source_code) ?code .

}

This query returns the source code methods, plus the source
code for the types referenced by the method itself recursively.
For instance, if a method m() returns a new object of type T,
then T is included in the query results; if then T has a field
of type T’ also T’ is included in the results and so on. We are
so able to get the scope for the methods we searched for.

VI. CONCLUSIONS

The paper briefly presented a framework that allows to take
advantages of petabytes of existing source code, transforming
it into useful structured data through a general ontology for
object-oriented languages, and adding semantic annotations to
comments. The result is a layer queryable by SPARQL that
can be exploited to create different advanced developer tool.
Future work shall aim to make the framework multi-thread and
add support for other build tools and their configuration files.
Another future work may focus on developing the ontology
further, in order to support high-level features such as an
improved representation of source code dependency.

ACKNOWLEDGMENTS

This work was supported in part by a Google Faculty
Research Award (Winter 2015) and by MIUR PRIN 2010-11
project Security Horizons. The authors wish to thank Massimo
Bartoletti, Livio Pompianu and Carlo Zaniolo for the insightful
discussions on related topics.

REFERENCES

[1] S. G. Y. H. Yi Wei, Nirupama Chandrasekaran, “Building bing developer
assistant. MSR-TR-2015-36,” Microsoft Research, Tech. Rep., 2015, tool
available at http://codesnippet.research.microsoft.com/.

[2] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining:
helping to navigate the API jungle,” in ACM SIGPLAN 2005 Conf. on
Programming Language Design and Implementation, 2005, pp. 48–61.

[3] S. P. Reiss, “Semantics-based code search,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 243–253.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070525

[4] G. Little and R. C. Miller, “Keyword programming in Java,” Autom.
Softw. Eng., vol. 16, no. 1, pp. 37–71, 2009.

[5] M. Atzori, “Toward the web of functions: Interoperable higher-order
functions in SPARQL,” in The Semantic Web - ISWC 2014 - 13th
International Semantic Web Conference, 2014, pp. 406–421.

[6] ——, “call: A nucleus for a web of open functions,” in The Semantic
Web - ISWC 2014 - 13th International Semantic Web Conference, 2014,
pp. 17–20.

[7] P. N. Mendes, M. Jakob, A. Garcı́a-Silva, and C. Bizer, “Dbpedia
spotlight: shedding light on the web of documents,” in I-SEMANTICS
2011, Graz, Austria, September 7-9, 2011, 2011, pp. 1–8.

[8] P. Ferragina and U. Scaiella, “Fast and accurate annotation of short texts
with wikipedia pages,” IEEE Software, vol. 29, no. 1, pp. 70–75, 2012.

[9] R. Dabrowski, K. Stencel, and G. Timoszuk, “Software is a directed
multigraph,” in ECSA 2011, Essen, Germany, 2011, pp. 360–369.

106

Authorized licensed use limited to: University of Pisa. Downloaded on July 02,2023 at 16:13:45 UTC from IEEE Xplore.  Restrictions apply. 


