
Correlation and Unintended Biases on Univariate
and Multivariate Decision Trees

Mattia Setzu
Department of Computer Science

University of Pisa
Pisa, Italy

mattia.setzu@unipi.it

Salvatore Ruggieri
Department of Computer Science

University of Pisa
Pisa, Italy

salvatore.ruggieri@unipi.it

Abstract—Decision Trees are accessible, interpretable, and
well-performing classification models. A plethora of variants
with increasing expressiveness has been proposed in the last
forty years. We contrast the two families of univariate DTs,
whose split functions partition data through axis-parallel hyper-
planes, and multivariate DTs, whose splits instead partition data
through oblique hyperplanes. The latter include the former, hence
multivariate DTs are in principle more powerful. Surprisingly
enough, however, univariate DTs consistently show comparable
performances in the literature. We analyze the reasons behind
this, both with synthetic and real-world benchmark datasets.
Our research questions test whether the pre-processing phase of
removing correlation among features in datasets has an impact on
the relative performances of univariate vs multivariate DTs. We
find that existing benchmark datasets are likely biased towards
favoring univariate DTs.

I. INTRODUCTION

Decision Trees (DTs) [1] are accessible, interpretable, and
well-performing classification models that are commonly used
in practice. These models are widely available across software
libraries and are standard baselines in industry and academic
communities [2]. DTs are inherently transparent [3], which
may facilitate the inclusion of stakeholders in understanding
and assessing model behaviour. Moreover, ensembles of DTs
outperform deep learning models on tabular data [4]. Trending
research topics include the design of DT learning algorithms
able to reproduce the behavior of complex and opaque models
(e.g., of a tree ensemble [5]–[8]), and the design of DT
learning algorithms able to adapt to distributions of data
different from the one of the training dataset [9].

The condition tested at internal nodes of a decision tree
can be broadly categorized as univariate or multivariate,
the former yielding axis-parallel splits, and thus producing
univariate DTs (UDTs), and the latter yielding oblique splits,
and thus producing multivariate DTs (MDTs). These two
families of DTs have found wildly different degrees of success
in practical use, and in the scientific research. Multivariate DTs
are, in principle, more expressive than the univariate ones,
being capable of linearly separating the space of instances.
Such an expressivity comes at a higher computational cost
and an interpretational gap. Surprisingly enough, when com-
pared head-to-head [10], there is not a clear-cut performance
difference between the two types of DTs. For this, MDTs are

often dismissed in favor of univariate ones – an application of
the Occam’s razor.

In this paper, we analyze the reasons behind this unexpected
behavior by analytically comparing the two families of DTs,
and by identifying a bias in standard dataset pre-processing
practices that favors UDTs. We further support our theoretical
results with an extensive experimentation on both synthetic
and real-world datasets, which confirms the above bias.

The paper is structured as follows. In Section II, we define
background notions on DTs. In Section III, we pose our
research questions. Experimental results are discussed in Sec-
tion IV. Finally, in Section V, we summarize our conclusions.

II. BACKGROUND

A. Decision Trees

A decision tree T is a tree data structure comprised of N
nodes {ni}Ni=1, either internal nodes or leaves. Each internal
node points to a number of child nodes, the degree of the
node, based on the possible outcomes of the split function
at the node. Leaf nodes terminate the tree and are associated
with task-dependent values, e.g., in a classification task, a leaf
holds an estimated probability distribution over class labels.
Top-down tree learning algorithms, such as CART [11] and
C4.5 [12], follow a greedy approach, in which the tree struc-
ture and the split functions are learned recursively. Optimal de-
cision tree learning algorithms [13] compile a complete binary
tree of given depth to a Mixed Integer Linear Programming
(MILP) problem. For uniformity, in the former approach, we
also restrict to a tree depth stopping criteria and to binary split
functions. Moreover, we disregard pre-processing steps, such
as feature selection [14], and post-processing steps, such as
tree simplification [15]. For a recent survey on DTs, see [16].

B. Split functions

We assume binary split functions (or, simply, splits) fi :
X → {0, 1}, that at an internal node ni deterministically
redirect an instance x ∈ X ⊆ Rm towards the left (fi(x) = 0)
or the right (fi(x) = 1) child node. Some approaches learn
a fuzzy split condition [17], for which the instance is proba-
bilistically redirected to one of the child nodes. Split functions
can vary in complexity, from being as simple as a univariate
split [11], [12] or as complex as a neural network [18]. The

mailto:mattia.setzu@unipi.it
mailto:salvatore.ruggieri@unipi.it

most common split functions are of the form 1-of-1 splits,
that is, they are comprised of a single boolean condition, for
which instances are redirected according to the result of the
condition. In multiconditional DTs, such as Trepan [19], split
functions consist of testing k boolean conditions, h of which
must be satisfied – an h-of-k split policy. This introduces
a significant cost in terms of both learning complexity and
interpretability. In the rest of this paper, we restrict to unicon-
ditional linear split functions of the form:

fi(x) = 1(α
T
i x ≤ βi) (1)

where αi ∈ Rm, βi ∈ R are the parameters of the split
function fi. Univariate splits implement univariate separating
hyperplanes, that is, αi is 0 but for a single component for
which it is 1. Multivariate splits allow for more than one non-
zero component, hence implementing separating hyperplanes
with an arbitrary number of non-zero components.

C. Univariate splits

Let us denote by n0, n1, and n2 a parent node and its two
child nodes respectively. Also, let Xi and Yi, for i = 0, 1, 2,
be the features and class attributes respectively, of the data
instances at the three nodes. Univariate splits test a condition
xj ≤ β, where xj with j ∈ 1, . . . ,m is a feature in X0 and
and β is in the domain of xj . According to [20], we distinguish
the following strategies.

Impurity-based splits. Impurity measures the heterogeneity
of class label frequency for instances at a node. We can define
vectors p1 and p2 holding the empirical class distribution of
the instances at n1 and n2, i.e., called freq(y, Yi) the frequency
of class label y in Yi:

p1 =

〈
freq(y, Y1)

| Y1 |

〉
y∈Y

p2 =

〈
freq(y, Y2)

| Y2 |

〉
y∈Y

(2)

Given p1 and p2, measuring impurity amounts to measuring
their distance to the standard basis of the class space: the larger
the distance, the more impure the split. Conventionally, the
distance is then mapped to a single a scalar through a weighted
sum. Typically, Euclidean or cosine distance is adopted [21].
A notable impurity measure is the Gini, namely the expected
probability of incorrectly labeling a random instance:

Gini(ni) = 1−
∑
y∈Y

(
freq(y, Yi)

| Yi |

)2

The difference between the Gini of the parent node and
the weighted average Gini of the child nodes quantifies the
increase in impurity after a candidate split. Gini-based ap-
proaches, such as CART [11], select the split which maximizes
such an increase.

Information Gain splits. Entropy measures the information
contained within a random variable based on the uncertainty
of its events [22]. The standard is Shannon’s entropy [23],
which for a node ni is defined as:

H(ni) =
∑
y∈Y

− freq(y, Yi)

| Yi |
log

freq(y, Yi)

| Yi |

Therefore, entropy is the expected information of the class
distribution at the node ni. The difference of entropy of the
parent node and the weighted average entropy of the child
nodes is the Information Gain of a split:

IG = H(n0)−
∑

i∈{1,2}

| Yi |
| Y0 |

H(ni)

Selecting the split for which the Information Gain is max-
imized is a popular strategy, which has been adopted in
several learning algorithms, including ID3 [24] and GID3 [25],
C4 [26] and C4.5 [27].

Statistical test splits. Other strategies look for the best split
through purely statistical tests or confidence intervals. Starting
from the contingency tables of true and predicted class labels
at the nodes n0, n1 and n2, a number of statistical measures
of associations can be considered to be maximized [28]–[30].

D. Multivariate splits

Unlike univariate splits, the search space of parameters αi’s
and βi’s in (1) for multivariate splits cannot be efficiently
enumerated. Instead, they are determined through specialized
optimization algorithms. Such an optimization introduces a
significant computational overhead.

Margin optimization. Given their success in a host of
applications, Support Vector Machines [31] (SVMs) are a
natural candidate for optimizing class separation. Provided
with linear kernels, SVM-based multivariate trees have been
implemented in SVM Trees [32], Geometric Trees [33], and in
Reflector-based Trees such as CartOpt [34] and HHCart [35].

Linear optimization. Linear Trees are families of DTs
that directly optimize a linear model at each node. Linear
Discriminant Trees [10] and QUEST [36] build on top of
Fisher’s linear discriminant, a statistical method to find linear
combinations separating samples. Linear Machines [37] relies
on the encoding of a DT into a set of one-vs-all linear models.
Weighted Oblique Decision Trees [38] look to optimize a
differentiable formulation of entropy in which samples are first
mapped through a nonlinear function.

Composed optimization. Trees based on composed opti-
mization aim to leverage univariate splits to either learn
mixed trees, or use the univariate split as an initialization for
the multivariate one. For instance, OC1 [39] initializes each
multivariate split with a univariate one derived from CART,
which is then replaced by a better multivariate one learned
through a series of optimization techniques. Directly extending
its univariate counterpart, CART-LC [11] optimizes a local
linear model, which is then simplified by pruning coefficients.
Model Trees [40] instead take a mixed approach and first build
a CART Tree, by progressively replacing the univariate splits
at the penultimate layer with multivariate ones, each iteration
pruning the replaced subtree, only to stop when no further
performance gain is achieved.

Other forms of optimization. Several learning algorithms
employ complex nonlinear and nondifferentiable optimization
techniques: Genetic Trees [41] and Evolutionary Trees [42]

Mean ± Stdev Min Max
Dataset size 196,907 ± 1,301,496 68 9,999,889
Dimensionality 649.22 ± 2,942.14 4 20,001
Dimensionality ratio 20,585.62 ± 144,532.71 0.00 1,111,098.77

TABLE I: Summary of the 57 benchmark datasets.

employ genetic programming, and Annealing Trees [43] em-
ploy simulated annealing. Another noteworthy family of ap-
proaches departs from a greedy search by encoding the tree
learning into a global MILP optimization problem [13], [44]–
[46]. The resulting DTs are called optimal trees.

E. Feature correlation

In this paper, we focus on feature correlation as a ma-
jor property of interest due to its generality and possible
impact on DT performances. Correlation, and even more so
multicollinearity, relates multiple features by quantifying the
linear relationship occurring among them. Generally, given
two linearly dependent features xi, xj , we can express one
in linear terms of the other, i.e.:

xi = αxj + β + ϵ,

for suitable α, β ∈ R and small error ϵ. The same relationship
can be found in sets of ∆ features xi, . . . , xi+∆, in which case
we are dealing with multicollinearity, that is:

xi =

∆∑
j=i+1

αjxj + β + ϵ,

again for suitable αi+1, . . . , αi+∆, β and small error ϵ. Perfect
multicollinearity is rare in practice, and sets of features are
said to enjoy collinearity even if they are in an approximately
linear relationship. Multicollinearity leads to several problems
in regression analysis, which include high instability in the
optimization algorithm itself and large variance in the expected
results. As a consequence, removal of highly correlated, or ap-
proximately collinear, sets of features has been always a stan-
dard practice in dataset pre-processing [47]. Standard metrics
to measure collinearity, such as Variance Inflation Factors [48],
are tailored to specific cases, e.g., linear regression, hence
dataset- and task-agnostic proxy metrics, such as correlation,
are typically used instead. Correlation can be quantified in
many forms, each trying to detect a slightly different relation-
ship between pairs of features (xi, xj). Pearson’s correlation
ρP measures linear correlation through normalized covariance.
Spearman’s correlation ρS instead aims to measure monotonic
correlation through ranks of features. Kendall’s correlation ρτ ,
also known as Kendall’s τ , measures concordance of order,
that is, the probability of observing a difference between
concordant and discordant pairs w.r.t. the orderings assigned
by xi and xj .

III. RESEARCH QUESTIONS

Regarding univariate splits, [49] observes that the “choice
of split-selection metric typically has little effect on accuracy,
but can profoundly affect complexity and the effectiveness

and efficiency of pruning”. Regarding Linear Discriminant
Trees, while “the proposed method is accurate, learns fast, and
generates small trees, [...] results indicate that in the majority
of cases, a univariate method suffices” [10].

The reasons for the above conclusions have not been
sufficiently clarified in the (forty years old) literature on DT
learning. We intend to answer the following questions.

RQ1. Do feature correlation or other factors, such as
complexity of decision boundary and label noise,
impact on the performances of the split functions?
In particular, on the relative strength of univariate
vs multivariate splits? By answering this research
question we aim to understand the relationship be-
tween the correlation among the features and the
UDTs/MDTs performances. Detecting such an im-
pact will allow to guide practitioners on the choice
of UDTs vs MDTs.

RQ2. Are standard benchmark datasets used for evaluating
DT learning algorithms biased? We analyze stan-
dard benchmark datasets that have been and/or are
currently used in the literature. Identifying common
patterns of such datasets, i.e., with regard to feature
correlation, will then allow us to understand whether
experiments in the literature have relied on biased
collections of datasets.

RQ3. Does the bias in benchmark datasets transfer to a
biased evaluation of the performances of DT learning
algorithms? On the basis of the answers to RQ1 and
RQ2, we want to understand if bias in benchmark
datasets plus dependence of split functions from
correlation of features and other factors, turn out to
impact the experimental results in favor of UDTs vs
MDTs.

IV. EXPERIMENTS

A. Benchmark datasets

Following [50], we base the bulk of our analysis on a large
subset of UCI1 datasets. Moreover, we include several datasets
from the OpenML repository2, and from the Kaggle platform3,
for a total of 57 datasets4. We present a full list of datasets in
Table VII in the Appendix, and a short summary in Table I.
Datasets vary wildly in size, ranging from ≈ 70 to ≈ 10M
instances, in dimensionality, ranging from 4 to 20,000 features,
and in the size to dimensionality ratio, ranging from 0.009 to
110,000. We left in datasets only the numeric attributes, since
we restrict to linear split functions of the form (1). Finally,
feature values are z-score normalized.

B. Synthetic datasets

To best estimate the effects of feature correlation and
label noise on DT learning algorithms, we experiment also

1https://archive-beta.ics.uci.edu
2https://www.openml.org
3https://www.kaggle.com
4Several datasets from the original paper [50] have been removed due to

their extremely low number of features.

https://archive-beta.ics.uci.edu
https://www.openml.org
https://www.kaggle.com

(a) θ = 0° (b) θ = 15°

(c) θ = 30° (d) θ = 45°

Fig. 1: Performances of univariate and multivariate DTs with maximum depth of 1 on synthetic datasets with slope angle θ,
correlation ρ and noise ϵ. Legend: red triangles for UDTs, blue squares for MDTs.

θ
Accuracy F1 AUC AP

Test outcome p value Test outcome p value Test outcome p value Test outcome p value

0° 0.005 10−1 0.005 10−1 0.005 10−1 0.005 10−1

15° −0.136 10−28 −0.136 10−28 −0.132 10−27 −0.144 10−30

30° −0.159 10−32 −0.159 10−32 −0.158 10−32 −0.159 10−32

45° −0.270 10−68 −0.270 10−68 −0.273 10−69 −0.246 10−59

TABLE II: Paired t-test of the performance of univariate and multivariate DTs with maximum depth of 16 on synthetic datasets
with ϵ = 0 and slop angle θ.

with synthetic data in which we control for these factors.
We generate datasets with two normally-distributed features,
X1 and X2, including 1, 000 instances, and with Pearson’s

correlation5 ρP = ρ ranging from 0 to 1 in 0.1 steps. The
binary class label is defined as Y = 1(X2 > m · X1),

5X1 and X2 are generated as follows. Starting from X1, Z ∼ N(0, 1), we
have that X2 = ρ ·X1 +

√
1− ρ2 · Z ∼ N(0, 1) and Cor(X1, X2) = ρ.

(a) θ = 0° (b) θ = 15°

(c) θ = 30° (d) θ = 45°

Fig. 2: Performances of univariate and multivariate DTs with maximum depth of 16 on synthetic datasets with slope angle θ,
correlation ρ and noise ϵ. Legend: red triangles for UDTs, blue squares for MDTs.

Fig. 3: Model complexity of univariate and multivariate DTs with maximum depth of 16 on synthetic datasets with slope angle
θ, correlation ρ and noise ϵ. Legend: triangles for UDTs, squares for MDTs.

(a) Pearson (b) Spearman. (c) Kendall.

Fig. 4: Empirical CDFs of absolute feature correlation over the benchmark datasets. Top: any pair of features in a same dataset.
Bottom: mean correlation per dataset.

where the parameter m = tan(θ) is the slope of the decision
boundary and θ is the slope angle. Moreover, each dataset
is further replicated and perturbed to introduce some noise
by randomly flipping each label according to the outcome
of a Bernoulli trial with parameter ϵ ∈ {0, 0.1, 0.25}. The
definition of the class feature Y is specifically intended to
distinguish the cases when multivariate splits are theoretically
the best solution (0° ≪ θ ≪ 90°) from cases where axis-
parallel splits are sufficient (θ ≈ 0° or θ ≈ 90°) . Experiments
will then show the impact of feature correlation and label noise
in such contexts.

C. DT learning algorithms

For univariate DTs, we use CART [11], while for multi-
variate DTs we implemented an Omnivariate Tree [10]. Our
implementation tests several splits at each node, namely: an
SVM split [32], a gradient-SVM split, a Ridge split, a Least
Squares split, an Elastic Net split [51], a Lasso split, and
a CART split. At each node, all splits are evaluated, and
the one yielding the best Gini is selected. As in composed
optimization DTs such as OC1 [39], we include a CART split
in the candidates in case the data can be best separated with
a univariate split. Due to their extremely large computational
cost on moderate-to-large datasets, we do not include Optimal
Trees in the experimentation.

D. Performance and model complexity metrics

Each synthetic and benchmark dataset is split into 90%
training set and 10% test set by a stratified hold-out method.
We evaluate the learned DTs through several performance
metrics on the test set, including: F-measure (F1), AUC-ROC
(AUC), Average Precision (AP), and Accuracy (Acc). As for
model complexity, we consider: the size of the DT, and, for
MDTs, also the fraction of non-zero coefficients at its nodes.

E. Experimental Results

Let us consider our research questions.

RQ1. Do feature correlation, decision boundary slope, and
label noise impact on the performances of the split functions?

Figure 1 shows the mean and standard deviation of the per-
formances of DTs with a single univariate or multivariate split.
Each quadrant referes to synthetic datasets with increasing
slope angle θ ∈ {0°, 15°, 30°, 45°}. Let’s first consider the
case of no noise, i.e., ϵ = 0. By construction of the synthetic
datasets, angles close to 0° should lead to axis-parallel splits,
while angles close to 45° should favor oblique splits. This is
apparent in the plots, where for θ = 0° there is no difference
between UDTs and MDTs, and for θ = 45° the MDTs
perform much better than UDTs. Moreover, for θ = 45°, the
gap between MDTs and UDTs increases with correlation ρ.
This can be explained by observing that the larger the ρ the
more the data instances are closer to the decision boundary
Y = 1(X2 > X1) of θ = 45°, hence it becomes more and
more difficult to separate them with axis-parallel splits. For
moderate (ϵ = 0.1) to large (ϵ = 0.25) noise, the gap between
MDTs and UDTs decreases. Intuitively, the decision boundary
becomes more complex, and neither an oblique nor an axis-
parallel split are adequate.

Figure 2 reports the same analysis for DTs of maximum
depth 16. For zero noise, the performance gap is smaller
than in the previous case, as UDTs are now larger and can
better separate the decision boundary. However, Table II shows
that such differences are statistically significant. For moderate
noise (ϵ = 0.1), something surprising can be observed: UDTs
perform better than MDTs, which in addition appear to be
unstable. We explain this by the fact that MDTs overfit the
decision boundary with unnecessarily complex oblique splits.
This is particularly striking for θ = 0°, where axis-parallel
splits are enough. For large noise (ϵ = 0.25), the performances
of UDTs are still better than those of MDTs, but the gap is
smaller – as the irregularity of the decision boundary makes
both axis-parallel and oblique splits inadequate. Regarding
model complexity, Figure 3 shows that, regardless of label

MDTs Accuracy F1 AUC AP

UDTs
TR 0.932± 0.091 0.928± 0.098 0.886± 0.133 0.818± 0.230
TS 0.844± 0.125 0.837± 0.134 0.771± 0.163 0.635± 0.281

MDTs
TR 0.811± 0.213 0.816± 0.211 0.785± 0.203 0.687± 0.312
TS 0.720± 0.207 0.720± 0.215 0.683± 0.195 0.558± 0.296

TABLE III: Performances of UDTs and MDTs on benchmark
datasets. TR = training set. TS = test set.

TR Accuracy F1 AUC AP

mean .122± .170 .116± .169 .900± .148 .794± .135
min −.143 −.212 −.196 −.302
max .681 .770 .642 .486

UDT wins 49 47 46 46
MDT wins 8 10 11 11

TABLE IV: Performance gap between UDTs and MDTs on
benchmark datasets (test set).

Multivariate Tree size Non-zero coefficients ratio

UDTs 57.00 ± 146.719 -
MDTs 59.00 ± 75.544 0.409 ± 0.241

TABLE V: Model complexity of UDTs and MDTs on bench-
mark datasets.

0 5 10 15 20 25 30 35 40 45
ϕ̂

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 w

in
s α= 0.02

α= 0.05

Fig. 5: Cumulative weighted fraction of multivariate splits
wins in benchmark datasets at the variation of slope angle
estimate ϕ̂ and threshold α.

noise, UDTs are consistently larger than MDTs, with up to
50% additional nodes.

In summary, the presence of noise appears to have a major
impact in favor of UDTs performances, but at the cost of
higher model complexity. In absence of noise, MDTs are better
than UDTs if the decision boundary is actually oblique. In such
a case, the larger the correlation between features the larger
the gap with UDTs.

Partition Size Correlation ϕ̂

MDT ≫ UDT 4
|ρτ | 0.448± 0.132

29.66° ± 13.61°|ρP | 0.310± 0.391
|ρS | 0.449± 0.247

UDT ≫ MDT 8
|ρτ | 0.035± 0.123

21.81° ± 13.44°|ρP | 0.200± 0.306
|ρS | 0.148± 0.167

MDT ≈ UDT 45
|ρτ | 0.188± 0.166

22.06° ± 14.05°|ρP | 0.218± 0.183
|ρS | 0.218± 0.183

TABLE VI: Correlation and ϕ̂ estimate in benchmark datasets,
by group.

RQ2. Are standard benchmark datasets used for evaluating
decision tree algorithms biased?

Figure 4 shows the empirical cumulative distributions
(CDFs) of Pearson, Spearman, and Kendal correlation coef-
ficients over the benchmark datasets. The top CDFs regard
the correlation of any pair of features in the same dataset.
The bottom CDFs regard the mean correlation at a dataset
level. The feature correlation is extremely low over all pairs
of features, as shown by the steep CDF curves at the top. Small
mean correlation is also apparent in the CDFs at dataset level,
with half of them having a correlation lower or equal than
0.2. Such a bias in favor of low correlated features can be
traced back to the long-standing issue of collinearity in linear
models, for which inference algorithms are able to converge
faster and to less biased solutions.

According to the experiments on synthetic data, the other
factors affecting performance regard the decision boundary
(the slope angle θ) and the noise (ϵ). However, we do not have
ground truth knowledge to measure them over the benchmark
datasets. We proceed with a (weak) approximation as follows.
Consider any distinct pair x1, x2 of features in a dataset6.
We test whether the decision boundary w.r.t. these two-
dimensional features can be better described by an univariate
or a multivariate split. To this end, we train three Linear SVMs
using as features: (1) x1 only, (2) x2 only, and (3) both x1 and
x2. We say that the multivariate split from (3) wins over the
univariate splits in (1, 2) if the accuracy7 of the Linear SVM
using (3) is greater than 1+α times the accuracy of both Linear
SVMs using (1) or (2). Here, α is a threshold to ensure that
the improvement in accuracy is substantial. We experiment
with α = 0.02 (two percent) and α = 0.05 (five percent).
The fraction of pairs of features for which the multivariate
split wins – or simply, the fraction of wins – is a raw metric
of degree of “obliqueness” of the decision boundary of the
dataset. Moreover, we estimate the slope angle of the Linear
SVM in (3) as θ̂ = tan−1(−β1/β2), where β1, β2 are the
coefficients of x1 and x2 respectively. This approximation is
weak if the unknown noise (ϵ) is not small, or if the true

6For the high dimensional datasets arcene, dexter, and gisette, we consid-
ered random samples of 1M, 500K and 100K pairs respectively.

7Since we are not building predictive models in this task, the whole dataset
is used both for training and for calculating the accuracy.

decision boundary is not linear in x1, x2. We perform the
following transformation that makes the slope angle estimate
independent of the order of the two features x1 and x2 and of
the sign of the angle:

ϕ̂ = min{ |θ̂|, 90° − |θ̂| }

Thus, ϕ̂ ∈ [0°, 45°]. Figure 5 shows the cumulative weighed8

fraction of wins at the variation of ϕ̂ for different thresholds
α. Remarkably, multivariate splits win over univariate splits
with an improvement of at least 2% in less than 16% of
the pairs, and with an improvement of at least 5% in less
than 8% of the pairs. Therefore, decision boundaries of the
benchmark datasets are mostly axis-parallel. Moreover, the
skewed distributions in Figure 5 also highlight that multivariate
splits win mostly for large values of the slope angle ϕ̂.

In summary, the benchmarks datasets exhibit distributions
of feature correlation and of decision boundary slope that are
skewed towards low correlation values and approximatively
axis-parallel decision boundaries.

RQ3. Does the bias in benchmark datasets transfer to a biased
evaluation of the performance of DT learning algorithms?

Table III reports the aggregate predictive performances of
univariate and multivariate DTs on the benchmark datasets.
Univariate DTs consistently achieves better Accuracy, F1,
Average Precision, and AUC, as also shown in Table IV, along-
side the number of wins per model. Interestingly, univariate
DTs are better also on the training set, which suggests that the
decision boundaries in the datasets lead multivariate DTs to
largely overfit the data. The complexity of the learnt models,
shown in Table V, is in favor of multivariate DTs, especially
for what regards variability of tree size. However, the ratio of
non-zero coefficients is, on average, quite large – and this may
limit the benefit of having smaller trees if the objective is to
achieve model comprehensibility.

The vast majority of datasets have performance gaps be-
tween UDTs and MDTs within one standard deviation from
the mean, for each of the considered metrics. Thus, we
characterize a partition of datasets into three groups: when
MDTs perform better than UDTs by at least one standard
deviation (MDT ≫ UDT) for the F1 metric, the opposite
case (UDT ≫ MDT), and when the performances are within
one standard deviation (UDT ≈ MDT). Table VI reports the
mean ± stdev of the correlation coefficients, and of the slope
angle estimate ϕ̂ over the pairs of features of the datasets in
each group. For the small group MDT ≫ UDT, correlation
is moderate-to-large and ϕ̂ is larger than for the other two
groups. This is consistent with the results of experiments
with synthetic data, where MDTs perform better than UDTs
for large slope angles and large correlations. For the other
two groups UDT ≈ MDT and UDT ≫ MDT, correlation
is low and the estimated slop angles is, on average, lower
than for the MDT ≫ UDT group. Again, this is in line with

8Each pair of features is weighted by the inverse of the total number of
pairs in the dataset. This is made necessary by the large difference in feature
dimensionality among the datasets.

the case when oblique splits do not outperform axis-paralell
splits. There is no clear difference between the groups UDT
≈ MDT and UDT ≫ MDT in terms of slope angle, while
correlations coefficients of UDT ≫ MDT are smaller than
those of UDT ≈ MDT. From our theoretical analysis, we
can relate the different performance gaps of those two groups
partly to different feature correlation and partly to different
degrees of label noise. Unfortunately, without ground truth on
the class attributes, we cannot test the latter hypothesis.

In summary, the observed performances of UDTs and MDTs
can be largely explained by the factors analyzed in this paper:
feature correlation, slope of the decision boundary, and, we
conjecture, label noise. Based on the fact that benchmark
datasets are skewed towards low correlation and axis-parallel
decision boundaries, the fact that the observed performances
are mostly in favor of UDTs are expected. The practitioner,
then, should be warned about making the general conclusion
that UDTs are always better than MDTs.

V. CONCLUSIONS

We have compared two families of DTs which differ as
per expressive power of the split function: univariate and
multivariate DTs. The latter generates smaller trees, and,
in absence of noise, performs better than univariate DTs.
Moreover, the larger the feature correlation the larger is the
improvement in performance. This was established in answer-
ing RQ1. Next, we observed that standard benchmark datasets
are preprocessed to remove correlation. Also, we found their
decision boundary is approximatively “axis-parallel”. This was
established in answering RQ2. Finally, we tested whether the
previous two answers lead to the conclusion that the better
performances of univariate DTs observed in the literature
is due to biases in the benchmark datasets, namely skewed
correlation and “axis-parallel” decision boundaries. Our results
support that the observed differences in performances can
be explained by such factors. Consequently, practitioners are
advised to test such factors on their datasets before making a
choice whether to use MDTs or UDTs.

DATASETS AND CODE

The benchmark datasets can be downloaded from
https://huggingface.co/mstz. Experimental Python code and
scripts are available at https://github.com/msetzu/Univariate-
vs-multivariate-decision-trees.

ACKNOWLEDGMENT

Research partly funded by PNRR - M4C2 - Investimento
1.3, Partenariato Esteso PE00000013 - “FAIR - Future Artifi-
cial Intelligence Research” - Spoke 1 “Human-centered AI”,
funded by the European Commission under the NextGenera-
tion EU programme, and by the Excellent Science European
Research Council (ERC) programme for the XAI project -
“Science and technology for the explanation of AI decision
making” (g.a. No. 834756). This work reflects only the au-
thors’ views and the European Research Executive Agency
(REA) is not responsible for any use that may be made of the
information it contains.

https://huggingface.co/mstz
https://github.com/msetzu/Univariate-vs-multivariate-decision-trees
https://github.com/msetzu/Univariate-vs-multivariate-decision-trees

REFERENCES

[1] L. Rokach and O. Maimon, “Decision trees,” in The Data Mining
and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds.
Springer, 2005, pp. 165–192.

[2] C. Rudin, “A renaissance for decision tree learning,” https://www.
youtube.com/watch?v=bY7WEr6lcuY, 2016, keynote at PAPIs 2016.

[3] ——, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nat. Mach.
Intell., vol. 1, no. 5, pp. 206–215, 2019.

[4] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on typical tabular data?” in
NeurIPS, 2022.

[5] A. I. Weinberg and M. Last, “Selecting a representative decision tree
from an ensemble of decision-tree models for fast big data classifica-
tion,” J. Big Data, vol. 6, p. 23, 2019.

[6] T. Vidal and M. Schiffer, “Born-again tree ensembles,” in ICML, ser.
Proceedings of Machine Learning Research, vol. 119. PMLR, 2020,
pp. 9743–9753.

[7] V. Bonsignori, R. Guidotti, and A. Monreale, “Deriving a single inter-
pretable model by merging tree-based classifiers,” in DS, ser. Lecture
Notes in Computer Science, vol. 12986. Springer, 2021, pp. 347–357.

[8] E. Dudyrev and S. O. Kuznetsov, “Summation of decision trees,” in
FCA4AI@IJCAI, ser. CEUR Workshop Proceedings, vol. 2972. CEUR-
WS.org, 2021, pp. 99–104.

[9] J. M. Álvarez, K. M. Scott, B. Berendt, and S. Ruggieri, “Domain
adaptive decision trees: Implications for accuracy and fairness,” in
FAccT. ACM, 2023, pp. 423–433.

[10] O. T. Yildiz and E. Alpaydin, “Linear discriminant trees,” Int. J. Pattern
Recognit. Artif. Intell., vol. 19, no. 3, pp. 323–353, 2005.

[11] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Wadsworth, 1984.

[12] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[13] D. Bertsimas and J. Dunn, “Optimal classification trees,” Mach. Learn.,
vol. 106, no. 7, pp. 1039–1082, 2017.

[14] S. Ruggieri, “Complete search for feature selection in decision trees,”
J. Mach. Learn. Res., vol. 20, pp. 104:1–104:34, 2019.

[15] F. Esposito, D. Malerba, and G. Semeraro, “A comparative analysis of
methods for pruning decision trees,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 19, no. 5, pp. 476–491, 1997.

[16] V. G. Costa and C. E. Pedreira, “Recent advances in decision trees: an
updated survey,” Artif. Intell. Rev., vol. 56, no. 5, pp. 4765–4800, 2023.

[17] J. Adamo, “Fuzzy decision trees,” Fuzzy sets and systems, vol. 4, no. 3,
pp. 207–219, 1980.

[18] P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulò, “Deep neural
decision forests,” in IJCAI. IJCAI/AAAI Press, 2016, pp. 4190–4194.

[19] M. W. Craven and J. W. Shavlik, “Extracting tree-structured represen-
tations of trained networks,” in NIPS. MIT Press, 1995, pp. 24–30.

[20] K. Grabczewski, Meta-Learning in Decision Tree Induction, ser. Studies
in Computational Intelligence. Springer, 2014, vol. 498.

[21] U. M. Fayyad and K. B. Irani, “The attribute selection problem in
decision tree generation,” in AAAI. AAAI Press / The MIT Press,
1992, pp. 104–110.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley,
2001.

[23] T. Maszczyk and W. Duch, “Comparison of Shannon, Renyi and Tsallis
entropy used in decision trees,” in ICAISC, ser. Lecture Notes in
Computer Science, vol. 5097. Springer, 2008, pp. 643–651.

[24] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[25] U. M. Fayyad, “Branching on attribute values in decision tree gener-
ation,” in Proceedings of the 12th National Conference on Artificial
Intelligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 1,
B. Hayes-Roth and R. E. Korf, Eds. AAAI Press / The MIT Press,
1994, pp. 601–606.

[26] J. R. Quinlan, “Probabilistic decision trees,” in Machine Learning.
Elsevier, 1990, pp. 140–152.

[27] ——, C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
[28] J. Mingers, “An empirical comparison of selection measures for

decision-tree induction,” Mach. Learn., vol. 3, pp. 319–342, 1989.
[29] G. Katz, A. Shabtai, L. Rokach, and N. Ofek, “Confdtree: Improving

decision trees using confidence intervals,” in ICDM. IEEE Computer
Society, 2012, pp. 339–348.

[30] R. D. Rosa and N. Cesa-Bianchi, “Splitting with confidence in decision
trees with application to stream mining,” in IJCNN. IEEE, 2015, pp.
1–8.

[31] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[32] F. Nie, W. Zhu, and X. Li, “Decision tree SVM: an extension of linear
SVM for non-linear classification,” Neurocomputing, vol. 401, pp. 153–
159, 2020.

[33] N. Manwani and P. S. Sastry, “Geometric decision tree,” IEEE Trans.
Syst. Man Cybern. Part B, vol. 42, no. 1, pp. 181–192, 2012.

[34] B. L. Robertson, C. J. Price, and M. Reale, “Cartopt: a random search
method for nonsmooth unconstrained optimization,” Comput. Optim.
Appl., vol. 56, no. 2, pp. 291–315, 2013.

[35] D. C. Wickramarachchi, B. L. Robertson, M. Reale, C. J. Price, and
J. Brown, “HHCART: an oblique decision tree,” Comput. Stat. Data
Anal., vol. 96, pp. 12–23, 2016.

[36] W.-Y. Loh and Y.-S. Shih, “Split selection methods for classification
trees,” Statistica Sinica, pp. 815–840, 1997.

[37] C. E. Brodley and P. E. Utgoff, “Multivariate decision trees,” Mach.
Learn., vol. 19, no. 1, pp. 45–77, 1995.

[38] B. Yang, S. Shen, and W. Gao, “Weighted oblique decision trees,” in
AAAI. AAAI Press, 2019, pp. 5621–5627.

[39] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,” J. Artif. Intell. Res., vol. 2, pp. 1–32, 1994.

[40] J. R. Quinlan, “Learning with continuous classes,” in Australian Joint
Conf. on Artificial Intelligence, vol. 92. World Scientific, 1992, pp.
343–348.

[41] M. Kretowski, “An evolutionary algorithm for oblique decision tree
induction,” in ICAISC, ser. Lecture Notes in Computer Science, vol.
3070. Springer, 2004, pp. 432–437.

[42] E. Cantú-Paz and C. Kamath, “Inducing oblique decision trees with
evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 7, no. 1, pp.
54–68, 2003.

[43] D. G. Heath, S. Kasif, and S. Salzberg, “Induction of oblique decision
trees,” in IJCAI. Morgan Kaufmann, 1993, pp. 1002–1007.

[44] C. Bessiere, E. Hebrard, and B. O’Sullivan, “Minimising decision
tree size as combinatorial optimisation,” in CP, ser. Lecture Notes in
Computer Science, vol. 5732. Springer, 2009, pp. 173–187.

[45] S. Verwer and Y. Zhang, “Learning decision trees with flexible con-
straints and objectives using integer optimization,” in CPAIOR, ser.
Lecture Notes in Computer Science, vol. 10335. Springer, 2017, pp.
94–103.

[46] H. Zhu, P. Murali, D. T. Phan, L. M. Nguyen, and J. Kalagnanam, “A
scalable mip-based method for learning optimal multivariate decision
trees,” in NeurIPS, 2020.

[47] D. E. Farrar and R. R. Glauber, “Multicollinearity in regression analysis:
The problem revisited,” Review of Economics and Statistics, vol. 49, p.
92–107, 1967.

[48] D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics:
Identifying influential data and sources of collinearity. John Wiley
& Sons, 2005.

[49] J. K. Martin, “An exact probability metric for decision tree splitting and
stopping,” Mach. Learn., vol. 28, no. 2-3, pp. 257–291, 1997.

[50] M. F. Delgado, E. Cernadas, S. Barro, and D. G. Amorim, “Do we need
hundreds of classifiers to solve real world classification problems?” J.
Mach. Learn. Res., vol. 15, no. 1, pp. 3133–3181, 2014.

[51] J. K. Tay, B. Narasimhan, and T. Hastie, “Elastic net regularization paths
for all generalized linear models,” J. Stat. Softw., vol. 106, no. 1, 2023.

APPENDIX

https://www.youtube.com/watch?v=bY7WEr6lcuY
https://www.youtube.com/watch?v=bY7WEr6lcuY

Dataset # instances # features
Accuracy F1 AUC AP

UDT MDT UDT MDT UDT MDT UDT MDT

acute inflammation 120 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
adult 36631 7 0.840 0.361 0.830 0.381 0.729 0.448 0.497 0.222
arcene 100 10000 0.7 0.55 0.700 0.390 0.707 0.5 0.594 0.45
arhythmia 68 279 0.714 0.571 0.726 0.589 0.725 0.625 0.826 0.773
australian credit 690 7 0.724 0.608 0.724 0.609 0.720 0.611 0.611 0.510
balance scale 625 4 0.872 0.856 0.857 0.866 0.473 0.602 0.08 0.120
bank 45211 9 0.885 0.493 0.851 0.579 0.552 0.492 0.168 0.115
blood 748 3 0.773 0.493 0.727 0.524 0.575 0.400 0.306 0.218
breast 683 9 0.948 0.919 0.949 0.919 0.946 0.909 0.882 0.825
car 1728 6 0.979 0.861 0.979 0.857 0.980 0.813 0.940 0.658
contraceptive 1473 8 0.701 0.559 0.697 0.554 0.686 0.579 0.686 0.618
compas 4534 12 0.985 0.886 0.985 0.863 0.975 0.671 0.923 0.438
covertype 581012 54 0.808 0.507 0.809 0.502 0.796 0.460 0.640 0.348
dexter 2599 20000 0.559 0.498 0.539 0.335 0.559 0.498 0.535 0.499
electricity 45312 8 0.813 0.652 0.813 0.654 0.806 0.650 0.705 0.525
fertility 99 6 0.85 0.8 0.875 0.837 0.916 0.888 0.4 0.333
german 1000 17 0.695 0.695 0.697 0.694 0.644 0.634 0.399 0.392
gisette 7000 5000 0.942 0.965 0.942 0.964 0.942 0.965 0.925 0.951
glass 214 9 0.860 0.930 0.860 0.923 0.462 0.654 0.069 0.213
heart failure 299 12 0.733 0.633 0.729 0.633 0.677 0.576 0.459 0.360
heloc 10459 23 0.698 0.509 0.697 0.503 0.695 0.504 0.652 0.524
higgs 98049 28 0.681 0.523 0.681 0.522 0.679 0.526 0.646 0.542
hill 606 100 0.5 0.606 0.394 0.606 0.500 0.606 0.5 0.563
hypo 3269 23 0.909 0.640 0.897 0.719 0.610 0.576 0.177 0.102
ipums 299285 8 0.949 0.640 0.937 0.733 0.633 0.560 0.248 0.071
lrs 531 100 0.925 0.915 0.923 0.912 0.844 0.816 0.633 0.589
magic 19020 10 0.854 0.813 0.850 0.804 0.818 0.761 0.839 0.796
madelon 2000 500 0.73 0.527 0.729 0.527 0.73 0.527 0.666 0.514
house16 22784 16 0.854 0.770 0.853 0.767 0.818 0.711 0.871 0.807
ionosphere 351 34 0.887 0.859 0.888 0.855 0.885 0.827 0.900 0.846
musk 476 166 0.802 0.854 0.800 0.854 0.792 0.851 0.704 0.767
nbfi 8308 29 0.913 0.777 0.895 0.820 0.530 0.528 0.082 0.075
ozone 1847 72 0.921 0.910 0.920 0.910 0.691 0.649 0.226 0.170
page blocks 5473 9 0.967 0.931 0.966 0.926 0.906 0.748 0.719 0.429
phoneme 5404 5 0.851 0.392 0.852 0.401 0.833 0.453 0.635 0.275
pima 768 8 0.714 0.370 0.702 0.368 0.656 0.408 0.477 0.316
pol 15000 48 0.969 0.393 0.969 0.396 0.968 0.326 0.973 0.600
pums 299285 10 0.949 0.693 0.937 0.772 0.633 0.643 0.248 0.092
planning 182 12 0.648 0.594 0.612 0.552 0.513 0.449 0.303 0.285
post operative 87 8 0.722 0.5 0.677 0.525 0.561 0.469 0.322 0.266
seeds 0 210 7 0.833 0.976 0.822 0.975 0.767 0.964 0.650 0.952
seeds 1 210 7 0.976 0.976 0.976 0.975 0.982 0.964 0.933 0.952
seeds 2 210 7 0.928 0.952 0.927 0.952 0.910 0.946 0.838 0.886
segment 2310 18 0.997 0.991 0.997 0.991 0.998 0.969 0.985 0.948
shuttle 43500 9 0.999 0.999 0.999 0.999 0.998 0.998 0.999 0.999
sonar 208 60 0.761 0.738 0.758 0.732 0.756 0.731 0.694 0.670
spambase 4601 57 0.904 0.669 0.903 0.609 0.894 0.592 0.826 0.481
speeddating 1048 62 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
steel plates 1941 27 0.915 0.915 0.916 0.917 0.740 0.754 0.296 0.309
student performance 1000 6 0.83 0.775 0.827 0.780 0.785 0.764 0.845 0.835
sydt 9999889 8 0.979 0.672 0.978 0.704 0.956 0.705 0.979 0.875
toxicity 171 1203 0.542 0.457 0.529 0.449 0.445 0.357 0.297 0.294
twonorm 7400 20 0.826 0.875 0.826 0.874 0.826 0.875 0.765 0.858
vertebral column 310 6 0.870 0.838 0.869 0.838 0.839 0.815 0.871 0.856
wall following 5456 24 0.997 0.993 0.997 0.993 0.995 0.993 0.982 0.959
wine origin 179 13 0.916 0.944 0.917 0.944 0.916 0.937 0.803 0.868
wine 6497 12 0.989 0.308 0.989 0.219 0.986 0.539 0.991 0.772

TABLE VII: Performance of UDTs and MDTs per dataset. Train-test stratified split 90%-10%.

	Introduction
	Background
	Decision Trees
	Split functions
	Univariate splits
	Multivariate splits
	Feature correlation

	Research Questions
	Experiments
	Benchmark datasets
	Synthetic datasets
	DT learning algorithms
	Performance and model complexity metrics
	Experimental Results

	Conclusions
	References
	Appendix

