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Abstract—Transformer-based models are used to solve a va-
riety of Natural Language Processing tasks. Still, these models
are opaque and poorly understandable for their users. Current
approaches to explainability focus on token importance, in
which the explanation consists of a set of tokens relevant to
the prediction, and natural language explanations, in which
the explanation is a generated piece of text. The latter are
usually learned by design with models trained end-to-end to
provide a prediction and an explanation, or rely on powerful
external text generators to do the heavy lifting for them. In
this paper we present TRIPLEX, an explainability algorithm
for Transformer-based models fine-tuned on Natural Language
Inference, Semantic Text Similarity, or Text Classification tasks.
TRIPLEX explains Transformers-based models by extracting a
set of facts from the input data, subsuming it by abstraction,
and generating a set of weighted triples as explanation.

Keywords-Explainable Artificial Intelligence; Transformer-
based models; Natural Language Inference

I. INTRODUCTION

Attention-based models, such as Transformer-based mod-

els [1], have become the de-facto standard in many Nat-

ural Language Processing (NLP) tasks. Transformer-based

models such as BERT [2], RoBERTa [3], and DeBERTa [4]

produce very accurate results in a variety of NLP tasks [5],

[6], including Question Answering, Natural Language In-

ference, Sentiment Classification, and Question Answering.

Pre-trained as Masked Language Models (MLM) [2], Trans-

formers can then be fine-tuned on a variety of tasks, granting

them a high degree of flexibility. With a broad spectrum of

complex tasks to perform, Transformers tend to be large

models with millions [2], if not billions [4], of parameters,

effectively making them black boxes to anyone who tries to

understand their predictions.

Here, we focus on Natural Language Inference (NLI)

tasks [7], Semantic Text Similarity (STS) and Text Clas-

sification (TC). Given two sentences, namely premise and

hypothesis, an NLI task consists in identifying the relation-

ship between them: entailment if the premise entails the

hypothesis, contradiction if the premise contradicts the hy-

pothesis, and neutrality if the premise is inconsequential to

the hypothesis. To illustrate, consider the following example:

Premise Mice given a substance found in red wine lived

longer despite a fatty diet, a study shows.

Hypothesis Mice fed with red wine lived longer despite

a fatty diet.

The two are in an entailment relation, as the hypothesis

follows from the premise. Different hypotheses can yield

to different results; for example,

Hypothesis Mice fed with red wine did not live as long
despite a fatty diet.

yields a contradiction label, while

Hypothesis Mice fed with orange juice lived longer

despite a fatty diet.

yields a neutrality label.

STS and TC are more general tasks in which we rank the

similarity of a pair of text excerpts and classify a given text

excerpt, respectively.

In this work, we argue that large-scale automated de-

cision systems and the neural models at their core ought

to be thoroughly understood by the means of explanations.

Explainable Artificial Intelligence (XAI) offers algorithmic

solutions falling in one of two categories, either token im-

portance (TI) or natural language (NL) explanations. Token

importance explanations provide a set of relevant tokens in

the input text, possibly with an associated importance score,

of the relevance each token had on the prediction of the

model. This family of explanations heavily relies on the

input permanence assumption, i.e., they assume that even

at explanation time the user has access to, and should fully

leverage the input text.

Tokens assume a semantically valid meaning only when

read in situ in the input text, hence as explanations they are

incomplete, as they are not meaningful on their own without

the support of the input text. Natural language explanations

instead rely on learning appropriate natural language ex-

cerpts, thus providing rationales for a given prediction. Most

explanation algorithms in this category operate either on a

by-design or generative approach. In the former, the explana-

tion model and the black-box model coincide, and an expla-

nation is generated by-design alongside a prediction [8]. In

the latter, an external natural language generator is leveraged

to generate an explanation, and the model is queried to guide

the explanation generation and verify that the explanation is

consistent with the model prediction [9]. These algorithms
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tend to provide reasonably good explanations, but rarely rely

on semantically meaningful explanation generation while

fully relying on the goodness of the generator. This makes

for methods that are able to explain only as much as the

generator is able to generate, and lack an inherent semantic

component that we may find, for instance, in structured

knowledge bases. We argue that while faithful to the model,

leveraging structured domain knowledge makes for more

commonsense explanations that instead of relying on the

knowledge of a language generator, rely on human domain

knowledge. Moreover, we argue for minimizing reliance on

external language generator models in explainability, as we

prefer to avoid to rely on a black-box model to explain

another.

In this work, we aim to generate self-contained explana-

tions, i.e., explanations comprehensible without the support

of the input text, for Transformer-based models trained on

NLI, STS, or TC tasks. We wish to generate explanations

acting as surrogates for the instance at hand, and to com-

pletely remove language generators from our explanation

pipeline, replacing them with a combination of information

extraction algorithms and semantic perturbations. We argue

that a good surrogate should be explainable, while still being

coherent with the decision at hand. Our explanations aim to

emulate two natural reasoning mechanisms, one by abstrac-
tion, and one by similarity, according to the task at hand. In

particular, we rely on abstraction for explaining NLI tasks,

and on similarity for STS and TC tasks. To this end, we

leverage Information Extraction algorithms and knowledge

bases explicitly designed to encode supertype and same type
relationship between concepts. The former extract a set of

relevant facts from the input text, the latter create surrogate

triples to provide as explanations. We name our proposed

algorithm TRIPLEX (Triples for Explainability).

The rest of the paper is as follows. In Section II we give a

brief background on the literature, in Section III we present

TRIPLEX, in Section IV we show our experiments, and in

Section V we conclude our paper.

II. BACKGROUND AND RELATED WORK

Before introducing TRIPLEX, we discuss the literature

and introduce some basic notions to understand the details

of our proposal.

Transformers: Transformers employ a multi-head self-

attention mechanism in which attention matrices are com-

puted on a set of learned token representations. Indicated as

keys K and values Q, attention on tokens is computes as

follows:

Atth(K,Q, V ) = softmax

(
QKT

d

)
Vh, (1)

where d is a normalization parameter, and Vh is a set of

learned parameters mapping the keys and values to different

representations. Other than the scaled dot-product [1] shown

in Equation (1), attention is estimated in many forms, from

cosine similarity [10], to dot-product [11]. Transformers

learn a set of representation transformations V1, . . . , Vh, each

yielding a different attention head, as to have an ensemble

of token representations, with the goal of having different

heads learning different attentions. Heads are then arranged

in sequential attention layers, some specializing in different

tasks [12], [13], [14].

While not an explanation per se [15], attention weights

encode an alignment between tokens. In our proposal, we

leverage attention heads as an alignment indicator between

explanations and hypotheses.

Explainability in NLP Models: Token importance ex-

planations provide the user with a set of relevant input

tokens, effectively “highlighting” the input sequence most

relevant to the prediction. They come both post-hoc, as is

the case for Shap [16], LIME [17], and Integrated Gradi-

ents [18], or by-design, as is the case for Rationales [19], and

other models [20], [21], [22], [23]. Post-hoc algorithms pro-

vide explanations after the model prediction while by-design

algorithms do so out of the box. By-design explanation

algorithms usually rely on two-stage neural pipeline com-

prised of an explanation generator, tasked with generating

an explanation, and a predictor, tasked with performing the

learning task with the explanation as input. Some exclusively

rely on the generated explanation [19] while others rely both

on the generated explanation and input [23]. To accom-

modate the interest in token importance algorithms, some

datasets go as far as providing token highlights as input [8],

allowing to train models on gold truth explanations. Similar

and relevant tasks involve combinations of deductive [24],

[25], abductive [26] and commonsense [27], [28], [29], [30]

reasoning, in which models are trained to yield a possibly

structured reasoning to go along the prediction.

Token importance has been the main focus of XAI on nat-

ural language models, recently the focus has shifted towards

natural language explanations, in which the explanation is

a realistic, synthetic piece of text. We find applications in

Question Answering [31] and Text Classification [32]. On

NLI tasks, the algorithm presented in [33] and NILE [9]

are of particular interest. Silva et al. [33] propose a by-

design explanation algorithm that enriches premise and hy-

pothesis with additional knowledge from a knowledge base

to estimate the entailment label. The notions relevant for

the prediction found in the knowledge base is then used to

generate a natural language explanation. NILE is a post-hoc

explanation algorithm that leverages a two-way architecture

by generating candidate natural language explanations for

each label, and delegating prediction to a second module

that selects a candidate and its associated label.

Knowledge Bases and Semantic Perturbations: Knowl-

edge bases offer a formal and machine-readable approach

to domain knowledge representation. They range from gen-

eral purpose knowledge bases such as DBpedia [34] and
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Figure 1: An example of the TRIPLEX pipeline on a NLI task. In stage 1 we extract a set of triples from the premise/input

text to use as an explanation stub. The stub is forwarded to stage 2, where a knowledge-aware module generalizes it into a

set of explanation candidates by leveraging the WordNet taxonomy. The most generalized among the coherent candidates is

fed to the stage 3 which that computes the alignment of each triple, yielding the final explanation.

YAGO [35], to domain-specific ones such as Bio2RDF [36]

and Hetionet [37] for life sciences and WordNet [38] for

linguistics, and application-driven graphs such as the Google

Knowledge Graph, Microsoft’s Bing Knowledge Graph,

and Facebook’s Social Graph [39]. Recently, commonsense

knowledge bases have started to gain traction in the com-

munity [40], [27], [41]. WordNet provides taxonomies of

concepts with synonym and hypernym relations, i.e., each

concept c is associated to a set of synonyms syn(c) and

abstractions and hyper(c). For instance, the concept of cat
is associated with hypernyms feline and quadruped,

which are then associated with hypernyms mammal and

animal, and so on and so forth. cat is also associated to

synonyms kitty and kitten. Hypernyms provide direct

and simple semantic relationships to abstract any concept

in a given text, thus they are suitable for our “reasoning by

abstraction” purposes, while synonyms are naturally suitable

for “reasoning by similarity”.
Conditioned Text Generation: Conditioned Text Gen-

eration (CTG) is a Sequence-to-Sequence task in which a

given text t is transformed in another t′ conditioned on

some control code c. Control codes allow to automatically

add, remove [32], replace [42] some information from the

text, to change its sentiment or the context of the discussed

topic [43], and even generate novel text from a given prompt

according to the topic embedded in the control code [44].
Information Extraction: Information Extraction

algorithms [45], [46], [47], [48] extract factual information

from a given text, providing a structured representation in

the form of subject-predicate-object triples, each

indicating a relationship of type predicate between the

entities subject and object. For instance, let us take

the example in the introduction, Mice fed with red
wine lived longer despite a fatty diet.,

from which [45], which extracts (Mice, fed with,
wine) and (Mice, fed with, red wine).1

III. TRIPLEX

TRIPLEX locally explains predictions of Transformer-

based models fine-tuned on NLI, TC, or STS tasks via nat-

ural language explanations in the form of triples. TRIPLEX

1Available at https://github.com/philipperemy/stanford-openie-python

consists of a three-stage pipeline, as shown in Figure 1: i)

an information extraction module I , tasked with extracting

natural language triples e, operating as the explanation

stub; ii) a knowledge base G, tasked with guiding the

semantic perturbation of said triples; and iii) an explanation
enrichment E, tasked with enriching the explanation E(e)
for the user.

Our proposal is straightforward: the information extrac-

tion module extracts the explanation stub e from the input,

which is then semantically perturbed in accordance with

the knowledge base G, generating a set of candidate ex-

planations Ẽ, each generalizing e. Finally, the explanation

extractor selects an explanation in Ẽ to provide to the user

and enriches it with an optional alignment score enabling a

rank of the triples according to their importance.

We detail each phase separately, and report the full

procedure in Algorithm 2.

Information Extraction: In a first step of Information

Extraction we extract a set of triple-like propositions e
from the input text/premise by leveraging OpenIE [45],

OllIE [46], and ClausIE [48]. In other words, this step yields

a baseline explanation stub e that we are then going to

perturb. For NLI tasks, we limit ourselves exclusively to

extraction from and perturbation of the premise for generat-

ing explanations that provide the most general conditions

under which the same premise-hypothesis relationship is

maintained. For STS and TC tasks instead we rely on the

whole input text.

Candidate explanations generation and selection: In

this second step, we perturb the explanation stub through

the use of a knowledge base. In particular, the knowledge

base enables perturbations of the explanation stub either by

generalization (NLI tasks) or similarity (STS, TC tasks).

We leverage this process to generate a set of candidate

explanations stemming from the stub. Finally, we select the

best candidate explanation that we forward to the final stage.

As knowledge base G we employ WordNet [49], and

leverage its hypernym and synonyms taxonomy to perturb

the given text, iteratively constructing more general/different

text. Hypernym chains allow us to create abstractions of

concepts, thus enabling more abstract reasoning. Given a

concept c in G, we indicate with hyper(c, γ) its immediate
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Authorized licensed use limited to: University of Pisa. Downloaded on July 02,2023 at 13:03:12 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Explansion algorithm: generates a set of terms, either hypernyms or synonyms) from the given input x according

to the required strategy S.

Input: Input x, maximum depth K, search radius γ, knowledge base G, strategy S
Output: Expanded terms T

1: function EXPAND(x, K, γ, G, S)

2: if S == ’hypernyms’ then
3: x′ ← x[0] � select only the premise

4: T ← HYPERNYMS(x′,K, γ,G) � create hypernyms

5: else
6: T ← SYSNONYMS(x,K, γ,G) � create synonyms

7: return T

Algorithm 2 Explanation algorithm: given a text excerpt t, TRIPLEX creates an explanation stub by extracting a set of

triples by Information Extraction (Line 4). The stub is then provided to a knowledge base-powered algorithm that generates

a set of explanation candidates (Line 5) by semantically perturbing it according to the knowledge base. We query again the

model to classify candidates in terms of label (Line 10), and to compute the hypernym/synonym distance to the baseline

explanation (Line 11). Finally, we compute the alignment score of each triple with respect to the hypothesis(Line 18)/input

text (Line 21), and return it alongside the explanation (Line 22).

Input: Input x ∈ {(pi, hi), ti}, Information extractor I , Transformer-based model f , knowledge graph G, maximum depth

K, search radius γ, head h, layer l, Strategy S
Output: explanation e, alignment score a

1: function TRIPLEX(t, f , K, γ, G, S)

2: y ← f(x)
3: Ẽ ← ∅
4: e← I(t, S) � create explanation stub

5: H ← EXPAND(e,K, γ,G, S) � create explanation stub according to the task

6: Ẽ ← PERTURB(e) � perturb

7: candidates← []
8: distances← []
9: for ẽ ∈ Ẽ do

10: ỹi ← f(ẽ)
11: dẽ ← distance(G, e, ẽ) � compute candidate distance

12: if ỹi = y then � select explanations

13: candidates← APPEND(candidates, ẽ) � add explanation

14: distances← APPEND(distances, dẽ) � add explanation distance

15: e∗ ← candidates[argmaxt distances[t]] � select explanation

16: if S == ’hypernyms’ then
17: for et ∈ e∗ do
18: at ← αh,l

i (et, xi[1]) � alignment to hypothesis

19: else
20: for et ∈ e∗ do
21: at ← αh,l

i (et, x) � alignment to whole input

22: return e∗, a

top-γ hypernyms, that is the top-γ hypernyms one level

higher in the taxonomy. Similarly, we indicate with syn(c, γ)
its immediate top-γ synonyms, that is the top-γ synonyms

in the taxonomy. For simplicity, we are going to illustrate

the algorithm focusing on hyper, the procedure followed

when using syn is analogous. We repeat this procedure

on each hypernym (synonym), up to K level up in the

taxonomy. At each application of hyper we again select

the top-γ hypernyms according to their likelihood. Each

successive application of hyper yields hypernyms at dif-

ferent levels of abstractions, each increasing the distance in

the taxonomy between the initial concept c and the yielded

hypernym. In our previous cat example, hyper(cat) yields

{feline,quadruped}, a set of hypernyms at distance 1.
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Premise
Cairo is now home to some 15 million people – a burgeoning population that produces approximately

10,000 tonnes of rubbish per day, putting an enormous strain on public services. In the past 10

years, the government has tried hard to encourage private investment in the refuse sector , but some estimate

4,000 tonnes of waste is left behind every day, festering in the heat as it waits for someone to clear it up. It is often

the people in the poorest neighborhoods that are worst affected. But in some areas they are fighting back. In Shubra, one of

the northern districts of the city, the residents have taken to the streets armed with dustpans and brushes to clean up public areas
which have been used as public dumps.

Hypothesis
15 million tonnes of rubbish are produced daily in Cairo.

Explanation
Alignment Rank Subject Predicate Object

.050 2 Cairo is home to some 15 million people

.041 5 Government encourage finance in waste sector

.043 4 Finance is in waste sector

.046 3 People are in poor neighborhood

.057 1 4000 tonnes are left

Table I: Example of a TRIPLEX explanation for a contradiction instance. Triples in the (subject, predicate, object) form

are shown with their alignment score (column Alignment) and with their rank order (column Rank). Extraction spans are

shown in blue in the original premise.

Applying hyper again to feline and quadruped will

then yield mammal and living being, both hypernyms

at distance 2. Formally, the hypernym distance dh between

two concepts c, c′ in G is the number of levels separating

them in G. When dealing with multiple pairs of concepts

C = {(c1, c′1), . . . , (cn, c′n)} their hypernym distance is

defined as the sum of their hypernym distances, i.e.:

dH(C) =
∑

(ci,c′i)∈C

dh(ci, c
′
i). (2)

The larger the distance, the more abstract one set of

concepts with respect to the other. In TRIPLEX, we leverage

the hypernym distance to select the most abstract candidate

explanation. The same goes analogously for synonyms.

Explanation enrichment: Let D = (X,Y ) be a dataset

of n instances {xi}ni=1 and labels {yi}ni=1. In NLI tasks,

we denote with X = {xi = (pi, hi)}ni=1 the set of input

premises and hypotheses; in TC tasks we denote with

X = {xi}ni=1 the set of input texts; in STS we denote with

X = {xi = (si, s
′
i)}ni=1 the set of pairs of input texts to

compare. We denote by f the Transformer-based model we

aim to explain, and with f(xi) its prediction on an input

xi. Given two tokens tia, t
i
b in an input text xi,

2 we indicate

with αi(a, b) the attention weight of f on the two tokens. We

define an alignment score by extending the attention weight

function to sets of tokens Te, Tx:

αi(Te, Tx) =

∑
a∈Te,b∈Tx

αi(a, b)

| Te | + | Tx | . (3)

2In NLI and STS task, each xi is given by the concatenation of the two
input texts.

Note that, we use the same notation α(·, ·) for both tokens

or sets of tokens.

Additionally, we address attention weights in a given head

h in layer l with αh,l
i (Te, Tx). We exclusively employ α as

an attention, and thus alignment, mechanism between triples

and input text spans. In other words, Te are triples from the

explanation, while Tx are tokens from the input text: the

hypothesis for NLI tasks, and the whole input text for STS

and TC tasks.

Algorithm: TRIPLEX begins by extracting a set of

triples from the premise pi (NLI tasks) or the whole in-

put text ti (STS and TC tasks) through the information

extraction module (Line 4), yielding the explanation stub

e. After removing the duplicate triples from the previous

stage, we leverage WordNet to create a set of hypernyms or

synonyms (Line 5) for each entity. The function expand in

Algorithm 1 simply generates the hypernyms/synonyms for

the given text according to the task at hand, filtering out the

hypothesis in case of an NLI task. We generate the candidate

explanations Ẽ by replacing entities in the stub with any of

their respective hypernyms (NLI) or synonyms (STS, TC) –

Line 5. Then, we compute the hypernym (synonym) distance

dH of each candidate in Ẽ with respect to the stub (Line 11),

and return the one at highest hypernym (synonym) distance

(Line 15). Finally, we assign to each triple in e∗ an optional

alignment score computed as in Equation 3 (Lines 18 and

21).

We illustrate a TRIPLEX explanation with an example

on an NLI task in Table I. Here, we have a long premise

on waste management in the city of Cairo, Egypt, and a

hypothesis on daily waste production. TRIPLEX extracts

five triples with an associated alignment score, which we
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(a) RTE (b) AXb

(c) AXg (d) MNLI

(e) STS (f) AMAZON

Figure 2: Relative TRIPLEX explanation length for complete and trimmed (dashed line) explanation.

can use to rank them according to their alignment with the

hypothesis. The highest-scoring one, “4000 tonnes [of waste]

are left” on its own appears to contradict the hypothesis.

The lowest-scoring one, “Government encourage finance

in waste sector” instead does not provide any significant

information in either direction.

IV. EXPERIMENTS

TRIPLEX aims to replace the whole premise/text with a

synthesized text that is at the same time concise, under-

standable, and coherent with the prediction. With this goal

in mind, we pose two questions:

Q1: Are TRIPLEX explanations concise?

Q2: Are TRIPLEX explanations coherent?

We aim to answer the former by analyzing explanation com-

plexity and length, and the latter by analyzing explanation

similarity with the premise/input text. Label coherence is, as

previously stated, a by-product of explanation construction.

In this paper we quantitatively answer the two questions with

a data-driven analysis, and leave a human evaluation for fu-

ture work. We evaluate TRIPLEX on four NLI datasets from

the GLUE [5] and SuperGLUE [6] benchmarks, namely

#Records Performance

RTE 276 93.0
MNLI 9814 91.4

AXg 355 92.7
AXb 1103 53.2

AMAZON 2530 92.8
STS 1004 92.9

Table II: Natural Language Inference, Semantic Text Sim-

ilarity and Text Classification datasets, and DeBERTa per-

formance. Performance is reported on a blind test set, as

indicated in the SuperGLUE leader-board and in [50], [51],

using accuracy for RTE, MNLI, AMAZON STS, and AXg

and Matthew’s correlation for AXb.

Recognizing Textual Entailment (RTE) [53], [54], [55], [56],

Multi-Genre Natural Language Inference (MNLI) [57], and

the AXb and AXg diagnostic tasks from [5]; for the STS

and TC datasets we evaluate on Amazon Polarity [50] and

Semantic Text Similarity [51], respectively. The results are

summarized in Table II. Explanations have been extracted

from the pre-sampled validation set of each dataset. As a

Transformer-based model to explain, we employ the pre-
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(a) RTE (b) AXb

(c) AXg (d) MNLI

(e) STS (f) AMAZON

Figure 3: Cosine similarity between: i) TRIPLEX explanation and INTGRAD baseline; ii) TRIPLEX explanation and

premise/input text, as computed by SentenceBERT [52].

trained DeBERTa [4] model for NLI and STS tasks and the

trained Transformer in [50] for the TC task.3

We define a set of quantitative evaluation measures and

compare TRIPLEX against INTGRAD, a feature importance

baseline [58] in which tokens are highlighted in accordance

with their importance for the classification. As TRIPLEX

explanations correctly predict a label by construction, here

we focus on complexity and similarity measures: the former

to evaluate the reduction in complexity obtained by replacing

the whole premise/input text with the explanation, and the

latter to measure how effective the replacement is. As our

goal is to provide simple explanations, we wish to extract

small triples while retaining a high similarity with the

premise/input text. Moreover, we estimate their likelihood

via perplexity. Perplexity measures the negative likelihood

of a given input text according to a given language model:

the better the perplexity, the more natural the text.

[Q1] Complexity: We estimate complexity as “Rel-

ative size”, i.e., the ratio between the explanation and

premise/input text length, both computed in terms of char-

acter number. We compute the same indicator on the

trimmed explanations, in which we progressively remove

triples according to their alignment score. We notice a high

3Datasets and model from the huggingface library.

complexity in a relatively small number of explanations and

a linear increase in the majority, as shown in Figure 2.

Values > 1 are largely due to short premises/input text and

explanations that, once some of its tokens are replaced by

longer hypernyms/synonyms, inevitably increase the overall

explanation length. Moreover, information extraction tech-

niques tend to decouple and duplicate adjectives so that

a phrase SUBJ ADJ-1 ADJ-2 consisting of only three

tokens is expanded into two triples SUBJ - is - ADJ-1
and SUBJ - is - ADJ-2. This behavior is also found in

“nested” triples in which a single phrase is expanded into

multiple similar triples, significantly increasing the overall

explanation complexity. Interestingly, this behavior is less

evident on the Amazon dataset (Figure 2 (f)), where longer

input text reduces the verbosity and redundancy of the

extracted triples. We also report trimmed complexity, in

which we trim triples with increasingly higher alignment

score. In the plots of Figure 2 we denote with trim = n the

number of trimmed triples. Results suggest that trimming

triples tends to significantly reduce the complexity of the

overall explanations. In other words, the triples with higher

alignment score also tend to be the simpler.

[Q2] Similarity: Figure 3 reports cosine similarity com-

puted between (a) TRIPLEX explanations and the baseline
(INTGRAD), and (b) TRIPLEX explanations and the whole
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(a) RTE

(b) AXb

(c) AXg

(d) MNLI

(e) STS

(f) AMAZON

Figure 4: Explanation and premise/text perplexity.

premise or input text. Similarities are reported in sorted

order. High similarity with the baseline suggests that the

extracted triples are indeed relevant to the prediction, while

high similarity with the input text suggests that it retains

the information in the input text. Most explanations retain

a positive similarity, with a linear increase found in all

datasets, again due to the direct extraction that we perform.

Interestingly, this is also true for the explanation baseline,

suggesting that even the keywords identified by the baseline

align with the input text and the explanation.

Perplexity: We quantitatively estimate the quality of

the explanations by means of perplexity [59]. Figure 4

reports sorted perplexity measures on premises/input texts

and explanations, as computed by GPT-2 [60]. Perplexities

are highly similar, by explanation construction. Since we

are directly extracting from the input text with minimum

intervention, we expect the extracted propositions to be

highly similar in perplexity to the original premise/input text,

as we find out to be the case.

V. CONCLUSIONS

In this paper we have introduced TRIPLEX, a post-

hoc explanation algorithm for Transformer-based models,

with applications to NLI, STS, and TC tasks. Unlike other

approaches, we have removed dependence from external text

generator models. TRIPLEX explanations show relatively

low complexity and are highly similar to baseline existing

approaches, yet they meet some limit cases in which expla-

nation complexity degenerates.

As future work, we aim to address such limit cases and to

further reduce explanation complexity by properly masking

triples that do not contribute to the prediction of the model.

We also wish to integrate more complex and commonsense

knowledge graphs to better subsume the input text.
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[8] O.-M. Camburu, T. Rocktäschel, T. Lukasiewicz, and P. Blun-
som, “e-snli: Natural language inference with natural lan-
guage explanations,” arXiv preprint arXiv:1812.01193, 2018.

[9] S. Kumar and P. Talukdar, “Nile: Natural language inference
with faithful natural language explanations,” arXiv preprint
arXiv:2005.12116, 2020.

[10] A. Graves, G. Wayne, and I. Danihelka, “Neural turing
machines,” arXiv preprint arXiv:1410.5401, 2014.

[11] M.-T. Luong, H. Pham, and C. D. Manning, “Effective
approaches to attention-based neural machine translation,”
arXiv preprint arXiv:1508.04025, 2015.

[12] P. M. Htut, J. Phang, S. Bordia, and S. R. Bowman, “Do
attention heads in bert track syntactic dependencies?” arXiv
preprint arXiv:1911.12246, 2019.

[13] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What
does bert look at? an analysis of bert’s attention,” arXiv
preprint arXiv:1906.04341, 2019.

[14] B. Hoover, H. Strobelt, and S. Gehrmann, “exbert: A visual
analysis tool to explore learned representations in transform-
ers models,” arXiv preprint arXiv:1910.05276, 2019.

[15] S. Jain and B. C. Wallace, “Attention is not explanation,”
arXiv preprint arXiv:1902.10186, 2019.

[16] S. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” arXiv preprint arXiv:1705.07874, 2017.

[17] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should
i trust you?” explaining the predictions of any classifier,”
in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016,
pp. 1135–1144.

[18] M. Sundararajan, A. Taly, and Q. Yan, “Gradients of coun-
terfactuals,” arXiv preprint arXiv:1611.02639, 2016.

[19] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing neural
predictions,” arXiv preprint arXiv:1606.04155, 2016.

[20] S. Kim, J. Yi, E. Kim, and S. Yoon, “Interpretation of
nlp models through input marginalization,” arXiv preprint
arXiv:2010.13984, 2020.

[21] J. Landthaler, I. Glaser, and F. Matthes, “Towards explainable
semantic text matching.” in JURIX, 2018, pp. 200–204.

[22] H. Chen and Y. Ji, “Learning variational word masks to
improve the interpretability of neural text classifiers,” arXiv
preprint arXiv:2010.00667, 2020.

[23] H. Liu, Q. Yin, and W. Y. Wang, “Towards explainable nlp:
A generative explanation framework for text classification,”
arXiv preprint arXiv:1811.00196, 2018.

[24] P. A. Jansen, E. Wainwright, S. Marmorstein, and C. T.
Morrison, “Worldtree: A corpus of explanation graphs for el-
ementary science questions supporting multi-hop inference,”
arXiv preprint arXiv:1802.03052, 2018.

[25] D. Khashabi, S. Chaturvedi, M. Roth, S. Upadhyay, and
D. Roth, “Looking beyond the surface: A challenge set for
reading comprehension over multiple sentences,” in Proceed-
ings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), 2018, pp.
252–262.

[26] C. Bhagavatula, R. L. Bras, C. Malaviya, K. Sakaguchi,
A. Holtzman, H. Rashkin, D. Downey, S. W.-t. Yih, and
Y. Choi, “Abductive commonsense reasoning,” arXiv preprint
arXiv:1908.05739, 2019.

[27] N. F. Rajani, B. McCann, C. Xiong, and R. Socher, “Explain
yourself! leveraging language models for commonsense rea-
soning,” arXiv preprint arXiv:1906.02361, 2019.

[28] M. Geva, D. Khashabi, E. Segal, T. Khot, D. Roth, and
J. Berant, “Did aristotle use a laptop? a question answering
benchmark with implicit reasoning strategies,” Transactions
of the Association for Computational Linguistics, vol. 9, pp.
346–361, 2021.

[29] B. P. Majumder, O.-M. Camburu, T. Lukasiewicz, and
J. McAuley, “Rationale-inspired natural language explana-
tions with commonsense,” arXiv preprint arXiv:2106.13876,
2021.

[30] J. D. Hwang, C. Bhagavatula, R. L. Bras, J. Da, K. Sakaguchi,
A. Bosselut, and Y. Choi, “Comet-atomic 2020: On symbolic
and neural commonsense knowledge graphs,” arXiv preprint
arXiv:2010.05953, 2020.

[31] A. Nie, E. D. Bennett, and N. D. Goodman, “Learning
to explain: Answering why-questions via rephrasing,” arXiv
preprint arXiv:1906.01243, 2019.

[32] T. Wu, M. T. Ribeiro, J. Heer, and D. S. Weld, “Polyjuice:
Automated, general-purpose counterfactual generation,” arXiv
preprint arXiv:2101.00288, 2021.

[33] V. S. Silva, A. Freitas, and S. Handschuh, “Exploring knowl-
edge graphs in an interpretable composite approach for text
entailment,” in Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 33, no. 01, 2019, pp. 7023–7030.

52

Authorized licensed use limited to: University of Pisa. Downloaded on July 02,2023 at 13:03:12 UTC from IEEE Xplore.  Restrictions apply. 



[34] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. G. Ives, “DBpedia: A nucleus for a web of open data,”
in ISWC/ASWC, ser. Lecture Notes in Computer Science, vol.
4825. Springer, 2007, pp. 722–735.

[35] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core
of semantic knowledge,” in WWW. ACM, 2007, pp. 697–
706.

[36] M. Dumontier, A. Callahan, J. Cruz-Toledo, P. Ansell,
V. Emonet, F. Belleau, and A. Droit, “Bio2RDF release 3:
A larger, more connected network of linked data for the life
sciences,” in International Semantic Web Conference (Posters
& Demos), ser. CEUR Workshop Proceedings, vol. 1272.
CEUR-WS.org, 2014, pp. 401–404.

[37] D. S. Himmelstein, A. Lizee, C. Hessler, L. Brueggeman,
S. L. Chen, D. Hadley, A. Green, P. Khankhanian, and S. E.
Baranzini, “Systematic integration of biomedical knowledge
prioritizes drugs for repurposing,” bioRxiv, 2017. [Online].
Available: https://www.biorxiv.org/content/early/2017/08/31/
087619

[38] G. A. Miller, “WORDNET: a lexical database for english,”
in HLT. Morgan Kaufmann, 1992.

[39] N. F. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson,
and J. Taylor, “Industry-scale knowledge graphs: lessons and
challenges,” Commun. ACM, vol. 62, no. 8, pp. 36–43, 2019.

[40] R. Zellers, Y. Bisk, R. Schwartz, and Y. Choi, “Swag: A
large-scale adversarial dataset for grounded commonsense
inference,” arXiv preprint arXiv:1808.05326, 2018.

[41] N. Mostafazadeh, A. Kalyanpur, L. Moon, D. Buchanan,
L. Berkowitz, O. Biran, and J. Chu-Carroll, “Glucose: Gener-
alized and contextualized story explanations,” arXiv preprint
arXiv:2009.07758, 2020.

[42] C. Hao, L. Pang, Y. Lan, Y. Wang, J. Guo, and X. Cheng,
“Sketch and customize: A counterfactual story generator,”
arXiv preprint arXiv:2104.00929, 2021.

[43] S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino,
J. Yosinski, and R. Liu, “Plug and play language models: A
simple approach to controlled text generation,” arXiv preprint
arXiv:1912.02164, 2019.

[44] N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong,
and R. Socher, “Ctrl: A conditional transformer lan-
guage model for controllable generation,” arXiv preprint
arXiv:1909.05858, 2019.

[45] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld, “Open
information extraction from the web,” Communications of the
ACM, vol. 51, no. 12, pp. 68–74, 2008.

[46] Mausam, M. Schmitz, R. Bart, S. Soderland, and O. Etzioni,
“Open language learning for information extraction,” in Pro-
ceedings of Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language
Learning (EMNLP-CONLL), 2012.

[47] K. Gashteovski, R. Gemulla, and L. d. Corro, “Minie: min-
imizing facts in open information extraction.” Association
for Computational Linguistics, 2017.

[48] L. Del Corro and R. Gemulla, “Clausie: clause-based open
information extraction,” in Proceedings of the 22nd interna-
tional conference on World Wide Web, 2013, pp. 355–366.

[49] G. A. Miller, WordNet: An electronic lexical database. MIT
press, 1998.

[50] J. McAuley and J. Leskovec, “Hidden factors and hidden
topics: understanding rating dimensions with review text,” in
Proceedings of the 7th ACM conference on Recommender
systems, 2013, pp. 165–172.

[51] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Spe-
cia, “Semeval-2017 task 1: Semantic textual similarity-
multilingual and cross-lingual focused evaluation,” arXiv
preprint arXiv:1708.00055, 2017.

[52] N. Reimers and I. Gurevych, “Sentence-bert: Sentence
embeddings using siamese bert-networks,” arXiv preprint
arXiv:1908.10084, 2019.

[53] I. Dagan, O. Glickman, and B. Magnini, “The PASCAL
recognising textual entailment challenge,” in MLCW, ser.
Lecture Notes in Computer Science, vol. 3944. Springer,
2005, pp. 177–190.

[54] R. Bar-Haim, I. Dagan, B. Dolan, L. Ferro, D. Giampiccolo,
B. Magnini, and I. Szpektor, “The second pascal recognising
textual entailment challenge,” in Proceedings of the second
PASCAL challenges workshop on recognising textual entail-
ment, vol. 6, no. 1. Venice, 2006, pp. 6–4.

[55] D. Giampiccolo, B. Magnini, I. Dagan, and B. Dolan, “The
third pascal recognizing textual entailment challenge,” in
Proceedings of the ACL-PASCAL workshop on textual en-
tailment and paraphrasing. Association for Computational
Linguistics, 2007, pp. 1–9.

[56] L. Bentivogli, P. Clark, I. Dagan, and D. Giampiccolo, “The
fifth pascal recognizing textual entailment challenge.” in TAC,
2009.

[57] A. Williams, N. Nangia, and S. R. Bowman, “A broad-
coverage challenge corpus for sentence understanding through
inference,” in NAACL-HLT. Association for Computational
Linguistics, 2018, pp. 1112–1122.

[58] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution
for deep networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 3319–3328.

[59] C.-W. Liu, R. Lowe, I. V. Serban, M. Noseworthy, L. Charlin,
and J. Pineau, “How not to evaluate your dialogue system: An
empirical study of unsupervised evaluation metrics for dia-
logue response generation,” arXiv preprint arXiv:1603.08023,
2016.

[60] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever,
“Improving language understanding by generative pre-
training,” 2018.

53

Authorized licensed use limited to: University of Pisa. Downloaded on July 02,2023 at 13:03:12 UTC from IEEE Xplore.  Restrictions apply. 


